Why Battery Powered Vehicles Stack Up Better Than Hydrogen

Why Battery-powerWhy Battery-powered Vehicles Stack Up Better A battery electric vehicle in The University of Queensland’s vehicle fleet. CC BY-ND

Low energy efficiency is already a major problem for petrol and diesel vehicles. Typically, only 20% of the overall well-to-wheel energy is actually used to power these vehicles. The other 80% is lost through oil extraction, refinement, transport, evaporation, and engine heat. This low energy efficiency is the primary reason why fossil fuel vehicles are emissions-intensive, and relatively expensive to run.

With this in mind, we set out to understand the energy efficiency of electric and hydrogen vehicles as part of a recent paper published in the Air Quality and Climate Change Journal.

Electric vehicles stack up best

Based on a wide scan of studies globally, we found that battery electric vehicles have significantly lower energy losses compared to other vehicle technologies. Interestingly, however, the well-to-wheel losses of hydrogen fuel cell vehicles were found to be almost as high as fossil fuel vehicles.

Why Battery Powered Vehicles Stack Up Better Than Hydrogen Average well-to-wheel energy losses from different vehicle drivetrain technologies, showing typical values and ranges. Note: these figures account for production, transport and propulsion, but do not capture manufacturing energy requirements, which are currently marginally higher for electric and hydrogen fuel cell vehicles compared to fossil fuel vehicles.

At first, this significant efficiency difference may seem surprising, given the recent attention on using hydrogen for transport.

While most hydrogen today (and for the foreseeable future) is produced from fossil fuels, a zero-emission pathway is possible if renewable energy is used to:

Herein lies one of the significant challenges in harnessing hydrogen for transport: there are many more steps in the energy life cycle process, compared with the simpler, direct use of electricity in battery electric vehicles.

Each step in the process incurs an energy penalty, and therefore an efficiency loss. The sum of these losses ultimately explains why hydrogen fuel cell vehicles, on average, require three to four times more energy than battery electric vehicles, per kilometre travelled.

Electricity grid impacts

The future significance of low energy efficiency is made clearer upon examination of the potential electricity grid impacts. If Australia’s existing 14 million light vehicles were electric, they would need about 37 terawatt-hours (TWh) of electricity per year — a 15% increase in national electricity generation (roughly equivalent to Australia’s existing annual renewable generation).

But if this same fleet was converted to run on hydrogen, it would need more than four times the electricity: roughly 157 TWh a year. This would entail a 63% increase in national electricity generation.

A recent Infrastructure Victoria report reached a similar conclusion. It calculated that a full transition to hydrogen in 2046 – for both light and heavy vehicles – would require 64 TWh of electricity, the equivalent of a 147% increase in Victoria’s annual electricity consumption. Battery electric vehicles, meanwhile, would require roughly one third the amount (22 TWh).

Some may argue that energy efficiency will no longer be important in the future given some forecasts suggest Australia could reach 100% renewable energy as soon as the 2030s. While the current political climate suggests this will be challenging, even as the transition occurs, there will be competing demands for renewable energy between sectors, stressing the continuing importance of energy efficiency.

It should also be recognised that higher energy requirements translate to higher energy prices. Even if hydrogen reached price parity with petrol or diesel in the future, electric vehicles would remain 70-90% cheaper to run, because of their higher energy efficiency. This would save the average Australian household more than A$2,000 per year.

Pragmatic plan for the future

Despite the clear energy efficiency advantages of electric vehicles over hydrogen vehicles, the truth is there is no silver bullet. Both technologies face differing challenges in terms of infrastructure, consumer acceptance, grid impacts, technology maturity and reliability, and driving range (the volume needed for sufficient hydrogen compared with the battery energy density for electric vehicles).

Battery electric vehicles are not yet a suitable replacement for every vehicle on our roads. But based on the technology available today, it is clear that a significant proportion of the current fleet could transition to be battery electric, including many cars, buses, and short-haul trucks.

Such a transition represents a sensible, robust and cost-efficient approach for delivering the significant transport emission reductions required within the short time frames outlined by the Intergovernmental Panel on Climate Change’s recent report on restraining global warming to 1.5℃, while also reducing transport costs.

Together with other energy-efficient technologies, such as the direct export of renewable electricity overseas, battery electric vehicles will ensure that the renewable energy we generate over the coming decades is used to reduce the greatest amount of emissions, as quickly as possible.

Meanwhile, research should continue into energy efficient options for long-distance trucks, shipping and aircraft, as well as the broader role for both hydrogen and electrification in reducing emissions across other sectors of the economy.

With the Federal Senate Select Committee on Electric Vehicles set to deliver its final report on December 4, let’s hope the continuing importance of energy efficiency in transport has not been forgotten.The Conversation

About The Author

Jake Whitehead, Research Fellow, The University of Queensland; Robin Smit, Adjunct professor, The University of Queensland, and Simon Washington, Professor and Head of School of Civil Engineering, The University of Queensland

This article is republished from The Conversation under a Creative Commons license. Read the original article.

books_technology

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook-icontwitter-iconrss-icon

 Get The Latest By Email

{emailcloak=off}

LATEST VIDEOS

A huge iceberg just broke off West Antarctica’s most endangered glacier
A Huge Iceberg Just Broke Off West Antarctica’s Most Endangered Glacier
by Madeleine Stone
Huge blocks of ice regularly shear away from Antarctica’s ice shelves, but the losses are speeding up.
The Rise Of Solar Power
by CNBC
Solar power is on the rise. You can see the evidence on rooftops and in the desert, where utility-scale solar plants…
World's Largest Batteries: Pumped Storage
by Practical Engineering
The vast majority of our grid-scale storage of electricity uses this clever method.
Hydrogen Fuels Rockets, But What About Power For Daily Life?
Hydrogen Fuels Rockets, But What About Power For Daily Life?
by Zhenguo Huang
Have you ever watched a space shuttle launch? The fuel used to thrust these enormous structures away from Earth’s…
Fossil Fuel Production Plans Could Push Earth off a Climate Cliff
by The Real News Network
The United Nations is beginning its climate summit in Madrid.
Big Rail Spends More on Denying Climate Change than Big Oil
by The Real News Network
A new study concludes that rail is the industry that's injected the most money into climate change denial propaganda…
Did Scientists Get Climate Change Wrong?
by Sabine Hossenfelder
Interview with Prof Tim Palmer from the University of Oxford.
The New Normal: Climate Change Poses Challenges For Minnesota Farmers
by KMSP-TV Minneapolis-St. Paul
Spring brought a deluge of rain in southern Minnesota and it never seemed to stop.

LATEST ARTICLES

Climate Research Struggles To Find Funding
Climate Research Struggles To Find Funding
by Kieran Cooke
Climate research is the poor relation of the academic world. Since 1990 it’s won less than 5% of the research funds…
Climate Crisis Could Cause a Third of Plant and Animal Species to Disappear Within 50 Years
Climate Crisis Could Cause a Third of Plant and Animal Species to Disappear Within 50 Years
by Jessica Corbett
Successful implementation of the Paris agreement targets could help reduce extinctions considerably, possibly to 16% or…
New Tools Help Communities Measure And Reduce Their Emissions Locally
New Tools Help Communities Measure And Reduce Their Emissions Locally
by Stephen Pollard
The slogan “What you can measure, you can manage” has become a guiding principle for local climate action. There’s an…
Countering Climate Denialism Requires Taking On Right-wing Populism.
Countering Climate Denialism Requires Taking On Right-wing Populism
by Richard Calland
History may in due course record 2019 as the year in which the penny finally dropped about the climate emergency…
Kenya Is Experiencing Strange Weather. What's Behind It
Kenya Is Experiencing Strange Weather. What's Behind It
by Jennifer Fitchett
Many parts of Kenya have been experiencing torrential rainfall for a couple of months now. This has resulted in floods…
Atlantic Current Could Falter Before 2100
Atlantic Current Could Falter Before 2100
by Tim Radford
v The Atlantic current won’t come to a full stop the day after tomorrow. But it could face a temporary halt later this…
Temperature in Antarctica Soars Past 69°F as NOAA Reports Last Month Was World's Hottest January on Record
Temperature in Antarctica Soars Past 69°F as NOAA Reports Last Month Was World's Hottest January on Record
by Jessica Corbett
While the reading in Antarctica still needs to be confirmed, the Brazilian scientists who logged it called the new…
Africa's Mammals May Not Be Able To Keep Up With The Pace Of Climate Change
Africa's Mammals May Not Be Able To Keep Up With The Pace Of Climate Change
by John Rowan, Arizona State University
Humans have decimated the world’s mammals over the last several thousand years and continue to do so today.