How The World's Most Famous Codebreaker Unlocked The Secrets Of Nature's Beauty

No need to call the fire brigade. rokopix/Shutterstock

Getting out into nature may seem a world away from a maths classroom. But the beauty that surrounds us has order – and one of the world’s best codebreakers was the key to unlocking it.

Alan Turing may be best known for decrypting German messages created by their enigma machine in World War II. But the influential scientist thought about the interaction between nature and mathematics in great depth before his untimely death in 1954. In fact, his last published paper became one of the founding theories of mathematical biology, a subject devoted to understanding how nature’s mechanisms work by finding equations that describe them, from species population changes to the way cancerous tumours grow.

An mbu pufferfish wearing a particularly mesmerising Turing pattern. Dennis Jacobsen/Shutterstock

Turing proposed that two biological chemicals moving and reacting with each other in a mathematically predictable way could explain shapes and patterns across nature. For example, imagine that a cheetah’s coat is a dry forest with chemical “fires” breaking out all over. Simultaneously, firefighting chemicals of a second type work to surround and contain these fires, leaving charred patches – or spots – in the furry landscape.

Importantly, the speed of the firefighting inhibitor chemical must be faster than that of the spot-creating activator chemical for patterns to be created. Too slow, and the activator chemical will dominate, leading to uniform colour.

Turing came up with two equations that model what kinds of patterns would be produced as both the concentration of the two chemicals and the speed at which they diffuse changes. However, it was incredibly difficult to solve these complex equations with the primitive computing machines around at the time. Turing did undertake the painstaking task once though, producing a dappled pattern that resembled a cow’s skin.

Aided by modern computers, scientists have shown that Turing’s equations can be used to mimic countless two-dimensional patterns seen across the natural world, from fingerprints and the coats of animals to semi-arid landscapes.

Showing that the reactions and movements of chemicals is actually behind the creation of nature’s patterns was more difficult. For example, we can’t watch how the spots of cheetahs develop in the womb. Even observing the growing angel fish’s remarkable patterns change as they develop from juvenile stage to adulthood doesn’t provide proof that a dance of two activator inhibitor chemicals is at work.

Recently though, Turing patterns in hair follicles, chicken feathers, and teeth-like shark “scales” have all directly been shown to be produced by the interaction between an activator and an inhibitor chemical.

Of course, nature is rarely as simple as two chemicals interacting in isolation. Scientists have now extended Turing’s theory to explain more complex systems such as mussel beds, which extend for hundreds of metres in a large Turing pattern, and display a completely different type of pattern at a smaller scale. A four-chemical version of the theory also accurately models the formation of ridges in a vertebrate’s mouth.

Interestingly, we can also apply Turing’s work to a whole range of non-visual patterns. For example, my research explores how we use them to model the territory patterns of animals. Instead of describing the concentration and reactions between chemicals, we’ve used similar equations to describe the probability of the location of individuals, and the interactions between each individual and its environment.

As you can imagine, the equations are often highly complex, as multiple factors influence an animal’s movement, from the scent marks and physical presence of other animals to the location of prey and even memory.

But the movement patterns predicted by equations that model these factors compare surprisingly well to the actual movement of animals in an area. As well as being fascinating in itself, research like this can help us understand how changes in the habitat of a species affect wider ecosystems – which could be highly important considering the threat of extinction climate breakdown poses to hundreds of thousands of species.

This method of modelling territory patterns can even be extended to human populations. For example, one piece of research showed that the movement of Los Angeles gang members can be accurately predicted by equations that model the central location of their gang and the graffiti tags of other gangs.

Perhaps not even Turing would have imagined just how many of nature’s beautiful secrets his seminal paper would unlock. And it’s not just mathematical biology to which he made a defining contribution – we have his genius to thank for so much more. Thanks Alan.The Conversation

About the Author

Natasha Ellison, PhD Researcher, University of Sheffield

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Books

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook-icontwitter-iconrss-icon

 Get The Latest By Email

{emailcloak=off}

LATEST VIDEOS

Methane Emissions Hit Record Breaking Levels
Methane Emissions Hit Record Breaking Levels
by Josie Garthwaite
Global emissions of methane have reached the highest levels on record, research shows.
kelp forrest 7 12
How The Forests Of The World’s Oceans Contribute To Alleviating The Climate Crisis
by Emma Bryce
Researchers are looking to kelp for help storing carbon dioxide far beneath the surface of the sea.
Tiny Plankton Drive Processes In The Ocean That Capture Twice As Much Carbon As Scientists Thought
Tiny Plankton Drive Processes In The Ocean That Capture Twice As Much Carbon As Scientists Thought
by Ken Buesseler
The ocean plays a major role in the global carbon cycle. The driving force comes from tiny plankton that produce…
Climate Change Threatens Drinking Water Quality Across The Great Lakes
Climate Change Threatens Drinking Water Quality Across The Great Lakes
by Gabriel Filippelli and Joseph D. Ortiz
“Do Not Drink/Do Not Boil” is not what anyone wants to hear about their city’s tap water. But the combined effects of…
Talking About Energy Change Could Break The Climate impasse
Talking About Energy Change Could Break The Climate Impasse
by InnerSelf Staff
Everyone has energy stories, whether they’re about a relative working on an oil rig, a parent teaching a child to turn…
Crops Could Face Double Trouble From Insects And A Warming Climate
Crops Could Face Double Trouble From Insects And A Warming Climate
by Gregg Howe and Nathan Havko
For millennia, insects and the plants they feed on have been engaged in a co-evolutionary battle: to eat or not be…
To Reach Zero Emissions Government Must Address Hurdles Putting People Off Electric Cars
To Reach Zero Emissions Government Must Address Hurdles Putting People Off Electric Cars
by Swapnesh Masrani
Ambitious targets have been set by the UK and Scottish governments to become net-zero carbon economies by 2050 and 2045…
Spring Is Arriving Earlier Across The US, And That's Not Always Good News
Spring Is Arriving Earlier Across The US, And That's Not Always Good News
by Theresa Crimmins
Across much of the United States, a warming climate has advanced the arrival of spring. This year is no exception.

LATEST ARTICLES

Two-thirds Of Glacier Ice In The Himalayas Could Be Lost By 2100
Two-thirds Of Glacier Ice In The Himalayas Could Be Lost By 2100
by Ann Rowan
In the world of glaciology, the year 2007 would go down in history. It was the year a seemingly small error in a major…
Rising Temps Could Kill Millions A Year By Century’s End
Rising Temps Could Kill Millions A Year By Century’s End
by Edward Lempinen
By the end of this century, tens of millions of people could die each year worldwide as a result of temperatures rising…
New Zealand Wants To Build A 100% Renewable Electricity Grid, But Massive Infrastructure Is Not The Best Option
New Zealand Wants To Build A 100% Renewable Electricity Grid, But Massive Infrastructure Is Not The Best Option
by Janet Stephenson
A proposed multibillion-dollar project to build a pumped hydro storage plant could make New Zealand’s electricity grid…
Wind Farms Built On Carbon-rich Peat Bogs Lose Their Ability To Fight Climate Change
Wind Farms Built On Carbon-rich Peat Bogs Lose Their Ability To Fight Climate Change
by Guaduneth Chico et al
Wind power in the UK now accounts for nearly 30% of all electricity production. Land-based wind turbines now produce…
Climate Denial Hasn't Gone Away – Here's How To Spot Arguments For Delaying Climate Action
Climate Denial Hasn't Gone Away – Here's How To Spot Arguments For Delaying Climate Action
by Stuart Capstick
In new research, we have identified what we call 12 “discourses of delay”. These are ways of speaking and writing about…
Routine Gas Flaring Is Wasteful, Polluting And Undermeasured
Routine Gas Flaring Is Wasteful, Polluting And Undermeasured
by Gunnar W. Schade
If you’ve driven through an area where companies extract oil and gas from shale formations, you’ve probably seen flames…
Flight Shaming: How To Spread The Campaign That Made Swedes Give Up Flying For Good
Flight Shaming: How To Spread The Campaign That Made Swedes Give Up Flying For Good
by Avit K Bhowmik
Europe’s major airlines are likely to see their turnover drop by 50% in 2020 as a result of the COVID-19 pandemic,…
Will The Climate Warm As Much As Feared By Some?
Will The Climate Warm As Much As Feared By Some?
by Steven Sherwood et al
We know the climate changes as greenhouse gas concentrations rise, but the exact amount of expected warming remains…