Misreading The Story Of Climate Change And The Maya

Misreading The Story Of Climate Change And The Maya Stucco frieze from Placeres, Campeche, Mexico, Early Classic period, c. 250-600 AD. Wolfgang Sauber/Wikimedia, CC BY-SA

Carbon dioxide concentrations in Earth’s atmosphere have reached 415 parts per million – a level that last occurred more than three million years ago, long before the evolution of humans. This news adds to growing concern that climate change will likely wreak serious damage on our planet in the coming decades.

While Earth has not been this warm in human history, we can learn about coping with climate change by looking to the Classic Maya civilization that thrived between A.D. 250-950 in Eastern Mesoamerica, the region that is now Guatemala, Belize, Eastern Mexico, and parts of El Salvador and Honduras.

Many people believe that the ancient Maya civilization ended when it mysteriously “collapsed.” And it is true that the Maya faced many climate change challenges, including extreme droughts that ultimately contributed to the breakdown of their large Classic Period city-states.

However, the Maya did not disappear: Over 6 million Maya people live mainly in Eastern Mesoamerica today. What’s more, based on my own research in the Northern Yucatan Peninsula and work by my colleagues throughout the broader Maya region, I believe Maya communities’ ability to adapt their resource conservation practices played a crucial role in allowing them to survive for as long as they did. Instead of focusing on the final stages of Classic Maya civilization, society can learn from the practices that enabled it to survive for nearly 700 years as we consider the effects of climate change today.

 The Classic Maya built more than 40 cities across Eastern Mesoamerica and made sophisticated advances in agriculture, mathematics and astronomy.

Adapting to dry conditions

The earliest villages in the Maya lowlands date as far back as 2000 B.C., with several large cities developing over the following 2,000 years. A combination of factors, including environmental changes, contributed to the breakdown of many of these large Preclassic centers after the start of the first millennium A.D.

Beginning around 250 A.D., populations once again began to grow steadily in the Maya lowlands. This was the Classic Period. Laser mapping has shown that by the eighth century A.D., sophisticated agricultural systems supported city-states of tens of thousands of people.

Available evidence suggests that although the climate remained relatively stable for much of the Classic Period, there were occasional periods of decreased precipitation. Additionally, each year was sharply divided between dry and rainy seasons. Maximizing water efficiency and storage, and timing the planting season correctly, were very important.

Misreading The Story Of Climate Change And The Maya Plate with Maize God imagery, Mexico, 600-900 A.D. Wikimedia

If the rains did not come as expected for a year or two, communities could rely on stored water. However, longer droughts stressed their political hierarchy and complex inter-regional trade networks. The overarching key to survival was learning to adapt to changing environmental conditions.

For example, the Maya developed ever more elaborate terrace and irrigation networks to protect against soil runoff and nutrient depletion. They engineered intricate drainage and storage systems that maximized the capture of rainwater.

They carefully managed forests by monitoring the growth cycles of particularly useful trees. And they developed fuel-efficient technologies, such as burnt lime pit-kilns, to sustain environmental resources.

Misreading The Story Of Climate Change And The Maya An experimental burnt lime pit-kiln, modeled on ancient pit-kilns excavated in the Northern Lowlands. Kenneth Seligson, CC BY-ND

Coping with megadroughts

Available data indicate that a series of particularly intense droughts, lasting anywhere from three to 20 years or more, hit the Maya lowlands in the ninth and 10th centuries A.D. Archaeologists are still debating the exact timing, intensity, impact and location of these droughts. For instance, it appears that not all areas of the Maya lowlands were affected equally. As of now, these “megadroughts” do appear to line up with the final centuries of the Classic Period.

One main consequence was that people moved around the lowlands. Dramatic population growth in certain areas suggests that local communities may have absorbed these migrant groups. There also is evidence that they adopted new resource conservation practices to mitigate the additional stress of supporting larger numbers of people.

Decline and breakdown

During the ninth and 10th centuries A.D., many of the larger Classic Maya city-states fell as a result of several interrelated long-term trends, including population growth, increasingly frequent warfare and an ever more complex bureaucracy. Declining rainfall made a risky situation worse.

In the end, several population centers did experience relatively rapid final abandonment events. However, different areas experienced breakdowns at various times over a period of more than two centuries. Calling this series of events a collapse overlooks Maya communities’ ability to persevere for generations against mounting challenges.

Misreading The Story Of Climate Change And The Maya Pyramid at the site of Kiuic in Yucatan State, Mexico. Kenneth Seligson, CC BY-ND

We can see similar patterns in several other well-known civilizations. Ancestral Puebloan communities in the U.S. Southwest, formerly known as Anasazi, developed intricate irrigation networks to farm a naturally arid landscape starting around the beginning of the first millennium A.D. When rainfall began to decline in the 12th and 13th centuries A.D., they reorganized into smaller units and moved around the landscape. This strategy allowed them to survive longer than they would have by remaining in place.

Angkor, the capital of the ancient Khmer Empire located in modern Cambodia, developed very complex irrigation networks starting in the ninth century A.D. to manage annual floods. Increasingly irregular annual rain cycles over the course of the 13th and 14th centuries A.D. stressed the system’s flexibility. Difficulty in adapting to these changes was one factor that contributed to Angkor’s gradual decline.

All societies need to be flexible

Many observers have drawn parallels between disastrous climate shifts in the past and the fate of modern society. I believe this perspective is too simplistic. Current scientific understanding of climate change is not perfect, but modern societies clearly know a lot about what is happening and what needs to be done to avoid catastrophic warming.

Misreading The Story Of Climate Change And The Maya Maya woman in Chichicastenango, Guatemala, photographed in 2014. Stefano Ravalli, CC BY-SA

However, they also require the will to tackle critical threats. The Classic Maya proactively addressed climate challenges by adapting their ecological practices to a changing environment. This helped many communities survive for centuries through waves of intense drought. Their experience, and the persistence of other ancient civilizations, shows the importance of knowledge, planning and structural flexibility.

There also is an important difference between natural climate stresses on ancient societies and the human-induced challenge we face today: Modern humans can have a far greater impact on the survival of future generations. The Maya could only react to climatic conditions, but we know how to address the causes of climate change. The challenge is choosing to do so.The Conversation

About The Author

Kenneth Seligson, Assistant Professor of Anthropology, California State University, Dominguez Hills

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Books

List Price: $30.00
Sale Price: $30.00 $21.38 You save: $8.62


List Price: $7.95
Price: $7.95


List Price: $46.95
Price: $68.61


enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook-icontwitter-iconrss-icon

 Get The Latest By Email

{emailcloak=off}

LATEST VIDEOS

Fossil Fuel Production Plans Could Push Earth off a Climate Cliff
by The Real News Network
The United Nations is beginning its climate summit in Madrid.
Big Rail Spends More on Denying Climate Change than Big Oil
by The Real News Network
A new study concludes that rail is the industry that's injected the most money into climate change denial propaganda…
Did Scientists Get Climate Change Wrong?
by Sabine Hossenfelder
Interview with Prof Tim Palmer from the University of Oxford.
The New Normal: Climate Change Poses Challenges For Minnesota Farmers
by KMSP-TV Minneapolis-St. Paul
Spring brought a deluge of rain in southern Minnesota and it never seemed to stop.
Report: Today's Kids' Health Will Be Imperiled by Climate Change
by VOA News
An international report from researchers at 35 institutions says climate change will threaten the health and quality of…
How Supercharged Trash Gas Could Produce More Green Energy
by InnerSelf Staff
Synthetic compounds called “siloxanes” from everyday products like shampoo and motor oil are finding their way into…
300 Million Face Severe Risk of Climate-Fueled Coastal Flooding by 2050
by Democracy Now!
As a shocking new report finds that many coastal cities will be flooded by rising sea levels by 2050, Chile’s President…
Climate Warning: California Continues To Burn, Data Estimates Of Global Flooding
by MSNBC
Ben Strauss, CEO and Chief Scientist of Climate Central joins MTP Daily to discuss alarming new information about…

LATEST ARTICLES

Lessons From The Hockey Rink Could Help Ontario Tackle Climate Change
Lessons From The Hockey Rink Could Help Ontario Tackle Climate Change
by Jennifer Lynes and Dan Murray
The Auditor General of Ontario’s recent report found the province’s current climate change plan is not based on “sound…
Climate Change Threatens A Scary Number Of Plant Species
Climate Change Threatens A Scary Number Of Plant Species
by InnerSelf Staff
Almost 40% of global land plant species are very rare, and these species are most at risk for extinction as the climate…
How Drought Is Affecting Water Supply In Australia’s Capital Cities
How Drought Is Affecting Water Supply In Australia’s Capital Cities
by Ian Wright and Jason Reynolds
The level of water stored by Australia’s capital cities has steadily fallen over the last six years. They are now…
How Jet Stream Changes May Hit Global Breadbaskets
How Jet Stream Changes May Hit Global Breadbaskets
by Alex Kirby
Food shortages and civil disturbances may result from changes in the jet stream winds which circle the Earth,…
How To Design A Forest Fit To Heal The Planet
How To Design A Forest Fit To Heal The Planet
by Heather Plumpton
Reforestation has enormous potential as a cheap and natural way of sucking heat-absorbing carbon dioxide out of the…
Investors Fight Back Against Climate Wreckers
Investors Fight Back Against Climate Wreckers
by Paul Brown
Investors are using their shareholdings to force polluting companies to change their ways and cut carbon emissions.
Americans Are Worried About Climate Change, But Underestimate How Serious It Is
Americans Are Worried About Climate Change, But Underestimate How Serious It Is
by Bobby Duffy
The world is often better and getting better than people think. Murder rates, deaths from terrorism and extreme poverty…
How Climate, Not Conflict, Drove Many Syrian Refugees To Lebanon
How Climate, Not Conflict, Drove Many Syrian Refugees To Lebanon
by Hussein A. Amery
People who fled Syria in recent years are often viewed as war refugees because of the violence that has engulfed much…