How To Scrub Out The Steel Industry's Carbon Emissions

How To Scrub Out The Steel Industry's Carbon Emissions Electric arc furnaces can be used to decarbonise the steelmaking process. Oleksiy Mark/Shutterstock

Coal generated less than 2% of Britain’s electricity in 2020, despite being the largest single energy source seven years earlier. While the country’s electricity gets cleaner every year, there’s one sector where this carbon-rich fossil fuel remains difficult to replace: steelmaking.

If approved, Woodhouse Colliery in Cumbria would be the first deep coal mine to open in the UK for 30 years, and it would produce 2.7 million tonnes of coking coal annually for the steel industry.

Steel has a high strength-to-weight ratio and is relatively cheap to produce – qualities that make the material invaluable in construction and the car industry. As a major component of wind turbines, steel will be a big part of the transition to green energy too.

That’s partially why the global demand for steel is forecast to increase by more than a third by 2050. This could be bad news for the planet, though, as steel manufacturing already accounts for 7% of CO₂ emissions worldwide and 2.7% of UK emissions.

The world needs to find a way to make lots of steel while reducing the industry’s carbon footprint. And the government’s independent Climate Change Committee has recommended that steelmaking in the UK should reach near zero carbon emissions by 2035. So what’s the best route to a low-carbon steel industry?

How to make steel

To produce steel, iron ore is mined, processed and then alloyed with carbon and other elements. Coking coal, a form of coal with a high carbon content, plays three different roles in this process. It can help turn iron ore into iron, process iron into steel, and it’s also a fuel that can help power these processes.

In an integrated steelworks, coking coal is heated to around 1,100°C to produce a pure form of carbon called coke. Coke reduces the ore to iron in a blast furnace by reacting with oxygen to make carbon monoxide. One molecule of iron ore reacts with three molecules of carbon monoxide, leaving two iron atoms and three molecules of carbon dioxide. The greenhouse gas is then released into the atmosphere as waste.

Finally, iron is converted to steel by altering its carbon content in a basic oxygen furnace. Globally, 90% of the steel produced from iron ore is manufactured using this process.

A carbon-neutral steel industry could substitute coal in each step of this process. But at the moment, coal remains the most cost-effective option in most cases.

What are the alternatives?

However, integrated steelworks aren’t the only place steel is produced – 630 million tonnes of steel scrap is recycled each year, saving lots of energy and 950 million tonnes of CO₂, which is more than the annual emissions of the EU’s entire transportation sector. Recycling mainly takes place in an electric arc furnace, where electricity is used to melt and process scrap metal.

But this depends on vast quantities of scrap steel, and a 2015 study found that 85% of stainless steel is already recycled after its first use. There’s little room to increase the percentage of scrap in new steel in Europe, so manufacturing steel from iron ore will still be necessary in the future.

Direct reduction of iron ore to form iron is another process that uses less energy than a blast furnace. Natural gas is the fossil fuel of choice for 90% of plants using this method, concentrated in the Middle East and North America where gas prices are low. In 2018, only 100.5 million tonnes of steel were produced this way – just 5.6% of the total.

Directly reducing iron ore using hydrogen generated by clean electricity – otherwise known as green hydrogen – and then processing that in an electric arc furnace also powered by green electricity, is one method for producing low-carbon steel. Continuing to use coal in integrated steelworks, but capturing and either using or storing the CO₂ emitted, is another.

Direct electrolysis, where iron ore is turned directly into steel using electricity, also has potential, but it’s a long way from being commercially viable. With time running short, the surest route to the 2035 deadline for decarbonisation is to use the direct reduction method with hydrogen in electric arc furnaces, or use coal in integrated steelworks with carbon capture and storage. Globally, both are likely to play a role.

In the UK, 95% of emissions from steelmaking come from just two sites. It’s here the country’s path to a decarbonised steel sector will be decided. The recently published industrial decarbonisation strategy doesn’t specify what technologies must be used, and so doesn’t exclude the continued use of coking coal so long as the carbon emissions can be captured and used or stored.

Carbon capture is already a competitive option for decarbonising industrial processes such as ammonia production. But CO₂ mixes with other gases in steelworks emissions, making the capture process more difficult.

Globally, it’s likely that coal will continue to be used for making steel in the 2030s and beyond, due to the lifespan of existing plants and the immaturity of low-carbon alternatives. Fortunately, coal use in steel manufacturing by 2050 would still be compatible with the Paris Agreement, as long as emissions were 40% of today’s levels and about a third of those were captured. Hydrogen and electrification would do the rest of the work.

Coal use in steelmaking does not need to cease immediately, but guaranteeing that the future of steelmaking will be low-carbon requires action now. Continued coal use must be met with radical improvements in carbon capture and storage technology – it’s here the industry needs to show it can keep up.The Conversation

About The Author

Stephen Carr, Lecturer in Energy Physics, University of South Wales

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Books

Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming

by Paul Hawken and Tom Steyer
9780143130444In the face of widespread fear and apathy, an international coalition of researchers, professionals, and scientists have come together to offer a set of realistic and bold solutions to climate change. One hundred techniques and practices are described here—some are well known; some you may have never heard of. They range from clean energy to educating girls in lower-income countries to land use practices that pull carbon out of the air. The solutions exist, are economically viable, and communities throughout the world are currently enacting them with skill and determination. Available On Amazon

Designing Climate Solutions: A Policy Guide for Low-Carbon Energy

by Hal Harvey, Robbie Orvis, Jeffrey Rissman
1610919564With the effects of climate change already upon us, the need to cut global greenhouse gas emissions is nothing less than urgent. It’s a daunting challenge, but the technologies and strategies to meet it exist today. A small set of energy policies, designed and implemented well, can put us on the path to a low carbon future. Energy systems are large and complex, so energy policy must be focused and cost-effective. One-size-fits-all approaches simply won’t get the job done. Policymakers need a clear, comprehensive resource that outlines the energy policies that will have the biggest impact on our climate future, and describes how to design these policies well. Available On Amazon

This Changes Everything: Capitalism vs. The Climate

by Naomi Klein
1451697392In This Changes Everything Naomi Klein argues that climate change isn’t just another issue to be neatly filed between taxes and health care. It’s an alarm that calls us to fix an economic system that is already failing us in many ways. Klein meticulously builds the case for how massively reducing our greenhouse emissions is our best chance to simultaneously reduce gaping inequalities, re-imagine our broken democracies, and rebuild our gutted local economies. She exposes the ideological desperation of the climate-change deniers, the messianic delusions of the would-be geoengineers, and the tragic defeatism of too many mainstream green initiatives. And she demonstrates precisely why the market has not—and cannot—fix the climate crisis but will instead make things worse, with ever more extreme and ecologically damaging extraction methods, accompanied by rampant disaster capitalism. Available On Amazon

From The Publisher:
Purchases on Amazon go to defray the cost of bringing you,, and at no cost and without advertisers that track your browsing habits. Even if you click on a link but don't buy these selected products, anything else you buy in that same visit on Amazon pays us a small commission. There is no additional cost to you, so please contribute to the effort. You can also use this link to use to Amazon at any time so you can help support our efforts.


follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration


The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…


trees to plant for climate2
Plant These Trees To Improve City Life
by Mike Williams-Rice
A new study establishes live oaks and American sycamores as champions among 17 “super trees” that will help make cities…
north sea sea bed
Why We Must Understand Seabed Geology To Harness The Winds
by Natasha Barlow, Associate Professor of Quaternary Environmental Change, University of Leeds
For any country blessed with easy access to the shallow and windy North Sea, offshore wind will be key to meeting net…
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…
White sea ice in blue water with the sun setting reflected in the water
Earth’s frozen areas are shrinking 33K square miles a year
by Texas A&M University
The Earth’s cryosphere is shrinking by 33,000 square miles (87,000 square kilometers) per year.
A row of male and female speakers at microphones
234 scientists read 14,000+ research papers to write the upcoming IPCC climate report
by Stephanie Spera, Assistant Professor of Geography and the Environment, University of Richmond
This week, hundreds of scientists from around the world are finalizing a report that assesses the state of the global…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities | | | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.