A Home That Will Keep You Warm And Cool The Planet

A Home That Will Keep You Warm And Cool The Planet Shigemi okano/Shutterstock

If climate change makes you want to want to stay in bed all day and forget the world outside then I have some bad news. About 28% of global CO₂ emissions can be traced to the energy generated to light, cool and heat buildings, while a fifth of the UK’s emissions come from heating and powering homes. So a good chunk of your carbon footprint can be laid down before you’ve even left the house.

And that’s just the emissions that governments tend to count. Much of housing’s greenhouse gases come at other stages in a home’s life, including construction and demolition. These are called “embodied emissions”, and can make up as much as 90% of the whole-life emissions of some buildings.

“What I mean here is the carbon emissions involved in making, renovating and then eventually dismantling the building,” says Francesco Pomponi, vice chancellor’s research fellow at Edinburgh Napier University.

This includes everything from mining the materials for the cement to chopping down the trees for the floorboards to transporting everything to the building site to digging the foundations; and then later from knocking the building down to disposing of its constituent parts.

There are likely to be an extra 2 billion people on Earth by 2050, with most being born throughout Asia and Africa. Developing countries will need hundreds of millions of additional homes over the coming decades, while global emission will need to fall by 60% to keep average warming below 2°C.

In this edition of the Imagine newsletter, we shore up the home front in the fight against climate change. There may be no escape from the crisis enveloping our world, but the dream of better, greener housing could help us all sleep better at night.

First, let’s ditch concrete

Concrete is a wonder material, but like most of the innovations behind modern life’s conveniences, it’s carbon intensive. Fired bricks need temperatures higher than 1,000°C to cause chemical changes that give the material strength, and it’s as high as 1,450°C for cement. Just producing cement is thought to account for between 5-10% of global greenhouse gas emissions.

Since most new homes will be built in the developing world, experts agree that a greener concrete substitute will have to be affordable, attractive and made from locally sourced ingredients. But perhaps “green” isn’t the right word. Alastair Marsh, a research fellow in civil engineering at the University of Leeds, and Venkatarama Reddy, a professor of civil engineering at the Indian Institute of Science, believe that soil could be the perfect component for geopolymers – a naturally strong and durable alternative to cement.

A Home That Will Keep You Warm And Cool The Planet This electron microscope image shows the transformation of montmorillonite clay, left, a common component of soil, into a geopolymer, right. Alastair Marsh

  • How it works – Soil is taken from beneath the valuable surface layer and mixed with chemicals similar to those found in household cleaning products to dissolve the clay minerals into their constituent atoms. A playdough-like mix is formed that can be shaped in brick moulds. During firing at 80-100°C, the dissolved atoms rearrange to form a geopolymer, stabilising the remaining soil.

  • Brown is green – Soil-based geopolymers can be fired at lower temperatures and their ingredients don’t need to be shipped long distances. Depending on the conditions, these bricks could have half the carbon emissions of concrete, and a quarter of the amount produced by conventional fired bricks.

  • Back to basics – Earth-based housing has been the norm in many parts of the world for thousands of years, so there is a rich cultural history behind this idea in most places.

A Home That Will Keep You Warm And Cool The Planet The soil brick is stabilised which makes it more durable, and it does not need to be heated at extremely high temperatures like traditional bricks and cement. Haileybury Youth Trust, Author provided

Then let’s talk about heating

Bricks and mortar are just the start. Heating and energy use is the long-term source of carbon emissions in housing – it accounts for 18% of the UK’s total emissions. Even homes made with sustainable materials will leak heat and guzzle electricity if poorly designed.

Stephen Berry, a research fellow at the University of South Australia, argues that our ancestors knew how to design homes that could regulate temperature without energy and regardless of the climate.

A Home That Will Keep You Warm And Cool The Planet Some 2,300 years before the first electric refrigerator, Persians engineered cold storage units that made ice available year-round even through scorching desert summers. Flickr/davehighbury

By implementing design features that capture cool air and keep rooms aerated, Iranian architects were leading the world in zero-carbon home design – more than a thousand years before people started thinking about the emissions from their home energy use.

A Home That Will Keep You Warm And Cool The Planet Wind towers allowed Iranian architects to drop interior temperatures several degrees a millennium before the invention of air conditioning. Flickr/nomenklatura

Modern experts in low carbon architecture have developed a standard that strives to ensure all new homes produce as much energy as they consume. There are 400,000 of these “Passivhaus” certified buildings across Europe, and according to David Coley, a professor of low carbon design at the University of Bath, living in a zero-energy home is almost like buying a car that comes with free petrol for life.

So how come Passivhaus homes have heating bills that are a tenth the UK average?

  • Airtight and toasty – Passivhaus homes have much thicker insulation than other houses, with triple glazed windows to trap warm air and mechanical ventilation that can recover and circulate waste heat.

  • Self-powered – By installing solar panels on the roof, Passivhaus homes can produce some of the energy they use.

  • Rigorous and reliable – The Passivhaus scheme requires energy modelling to determine if a home will truly produce as much energy as it consumes. A guarantee that the correct insulation and other features have been delivered and fitted must also be rigorously reported to a third party.

A Home That Will Keep You Warm And Cool The Planet A Passivhaus home (right) leaks less heat than a traditional building (left). Passivhaus Institut/Wikipedia, CC BY-SA

Decarbonisation starts at home

Retrofit your home

If you’re living in a damp and drafty home that was built long before you were born, you might envy anyone living in a zero-energy new build. While you pay much higher heating bills, a lot of that precious warmth could be lost through poorly insulated walls and windows.

A recent study found that leaky homes are a common problem throughout Europe – particularly the UK, where on average 3°C is lost from homes every five hours during winter. Jo Richardson, professor of housing and social inclusion at De Montfort University, describes how retrofitting existing homes with insulated walls and windows could help make homes more energy efficient and drive down heating bills.

Rethink your gas system

But if a house is still reliant on burning natural gas to heat a water boiler, the source of carbon emissions remains. There are more than 23 million homes with a gas supply for heating and cooking in the UK – an energy burden that amounts to more than double the country’s annual electricity consumption and produces about 60 million tonnes of CO₂ emissions each year.

One way to decarbonise gas heating is to swap the fuel for something zero-carbon, like hydrogen gas. Another is to switch gas-fired boilers and ovens with electrical appliances. Seamus Garvey, professor of dynamics at the University of Nottingham, says that replacing boilers with electric heat pumps would be most energy-efficient:

Electricity can be converted directly to heat with 100% efficiency using cheap resistive elements – the same parts that are present in fan heaters and oil-filled radiators. With this, every terawatt hour (TWh) that’s currently provided by gas heating could be replaced by exactly one TWh of electrical heating.

Heat pumps use electricity to extract the input heat from a nearby river or stream, from the ground or from the air itself. This is known as the “cold source”. The process of extracting heat works similarly to how refrigerators remove heat from food. Delivering a convenient cold source to homes with heat pumps could provide old gas heating networks with an unlikely zero-carbon future, as Garvey explains:

Rather than delivering natural gas to homes, the gas network would deliver water from which domestic heat pumps could extract heat … A house could take in water, extract heat from the water so that it forms ice slurry and dump the slurry down the drain where it would melt again … Some of the water … could be the “grey water” from the house itself – the outflows from showers, baths, dishwashers and washing machines.

A Home That Will Keep You Warm And Cool The Planet In temperate countries, water is often plentiful during winter and could be a useful source of heat. Majivecka/Shutterstock

Recycling rainwater to help run electric heating is one (particularly creative) way of decarbonising energy use in homes, but it doesn’t count for much if the electricity came from burning fossil fuels.

Produce your own renewable energy

Over the last two decades, electricity grids have changed to accommodate “prosumers” – homes that produce and consume their own renewable electricity, often using rooftop solar panels or other sources of “microgeneration”, like small wind turbines.

Energy cooperatives have formed between neighbours, where homes can generate, store, and trade energy with each other. “One house can buy excess renewable generation from a neighbour’s solar panels, or from a community wind turbine,” says Merlinda Andoni, a research associate in smart energy systems at Herriot-Watt University.

Own energy production (with your community)

Community ownership of energy production has proven a successful model for increasing renewable generation, according to Iain MacGill and Franziska Mey, energy experts at the University of New South Wales and the University of Technology Sydney.

Germany reached 32% renewable electricity in 2015 with a target of 40% to 45% by 2025, and has some 850 energy cooperatives. Almost half of its installed capacity is owned by households, communities and farmers.

A Home That Will Keep You Warm And Cool The Planet Roofs in the Vienna suburbs are dotted with solar panels. Trabantos/Shutterstock

Denying the state a monopoly on renewable energy could win supporters that are usually sceptical of government efforts to limit climate change. Sarah Mills is a project manager for National Surveys on Energy and Environment at the University of Michigan. Her research found that Iowa, Kansas and Oklahoma – all states which voted for Donald Trump in 2016 – lead the US in renewable energy generation, with more than 30% of the power generated in each of these states coming from wind turbines and other renewable sources. Three nearby Great Plains states, Nebraska, South Dakota and North Dakota – all solid Republican – are also in the top ten. As Mills explains:

Many communities in these states see renewable energy as an economic opportunity … What that means is that conservatives like wind and solar power. They just don’t want the government to tell them that they must use renewable energy.

In time, you could become part of the ‘civic’ energy sector

Individual households generating energy and distributing it among communities with support from local authorities – this “civic” energy sector could become a dominant model for energy generation in the future according to Stephen Hall, a research fellow in energy economics and policy at the University of Leeds. It’s what energy systems might look like if “the move to a low-carbon society [isn’t] left to governments and big energy companies”, Hall says, and letting homes lead the way could have major benefits:

  • Smarter energy grid – Fewer big power plants would be needed if electricity generation came from multiple sources, disrupting centralised monopolies. Smart distribution systems could regulate this supply efficiently by, for example, providing electricity generated from solar panels on an empty house to busy schools and offices nearby.

  • Pay when you use, not how much – Energy utilities currently set consumers’ tariffs according to the volume of energy they use. This system means it’s not in the interest of the energy producer to help people reduce their demand or become more energy efficient. A smarter, decentralised system could instead charge customers according to when they use energy.

  • Think local – Local authority energy companies could charge residents for services such as “having a warm home” or “hot water”. This would encourage authorities to keep homes warm and well lit as cheaply as possible – promoting energy efficiency.

Overhaul housing entirely

Regardless of collective ambition on climate change, housing will have to change drastically in many places in the years ahead to help people resist the world outside. In the UK, 1.8 million people currently live in areas that are at significant risk of flooding – and their flood risk is likely to increase as the climate warms. According to Hannah Cloke, professor of hydrology at the University of Reading, we may need to consider:

Radical practices from parts of the world that flood more frequently … such as houses that are designed to float when floods come, rising on stilts as the water rises … There are less dramatic adaptations that can be made. Internally reinforced, mechanically sealable flood doors … Waterproof concrete and stone-slab floors. Electrical sockets can be raised and non-return valves can be fitted to toilets to stop sewage filling homes when it floods.

As Cloke explains, the fact that so many people live on floodplains in the UK is a reminder of how ill-prepared we are for the upheavals that climate change will bring. Homes – places of refuge and safety – could become the very opposite as old certainties suddenly disappear.

Rather than retreat into bunkers fortified with solar panels and flood doors, Matthew Paterson, professor of international politics at the University of Manchester, highlights that the roots of modern housing policy elicit a collective response.

The ‘great acceleration’ in greenhouse gas emissions [that occurred] during and after World War II [in the US] … was sustained by the expansion of consumption – most directly by the shift to mass car ownership and urban sprawl that ‘locked in’ high fossil energy use, not only in transport but in housing.

A Home That Will Keep You Warm And Cool The Planet Concrete jungles filled with the cars – housing policy has tended to ‘lock in’ high consumption, high emission lifestyles. John Wollwerth/Shutterstock

If housing policy has nurtured high-energy lifestyles, by encouraging people to live in dense suburbs with at least one car on the drive, Richard Kingston and Ransford Acheampong, experts in urban planning at the University of Manchester, believe it can be re-engineered to encourage ways of living that are healthier for people and the planet:

We need to build high density, mixed-use developments with affordable housing and excellent green spaces … Provide basic services within walking distance, create safe spaces for people to walk and provide public transit that uses clean energy.

About The Author

Jack Marley, Commissioning Editor, Environment + Energy, The Conversation

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Books

Drawdown: The Most Comprehensive Plan Ever Proposed to Reverse Global Warming

by Paul Hawken and Tom Steyer
9780143130444In the face of widespread fear and apathy, an international coalition of researchers, professionals, and scientists have come together to offer a set of realistic and bold solutions to climate change. One hundred techniques and practices are described here—some are well known; some you may have never heard of. They range from clean energy to educating girls in lower-income countries to land use practices that pull carbon out of the air. The solutions exist, are economically viable, and communities throughout the world are currently enacting them with skill and determination. Available On Amazon

Designing Climate Solutions: A Policy Guide for Low-Carbon Energy

by Hal Harvey, Robbie Orvis, Jeffrey Rissman
1610919564With the effects of climate change already upon us, the need to cut global greenhouse gas emissions is nothing less than urgent. It’s a daunting challenge, but the technologies and strategies to meet it exist today. A small set of energy policies, designed and implemented well, can put us on the path to a low carbon future. Energy systems are large and complex, so energy policy must be focused and cost-effective. One-size-fits-all approaches simply won’t get the job done. Policymakers need a clear, comprehensive resource that outlines the energy policies that will have the biggest impact on our climate future, and describes how to design these policies well. Available On Amazon

This Changes Everything: Capitalism vs. The Climate

by Naomi Klein
1451697392In This Changes Everything Naomi Klein argues that climate change isn’t just another issue to be neatly filed between taxes and health care. It’s an alarm that calls us to fix an economic system that is already failing us in many ways. Klein meticulously builds the case for how massively reducing our greenhouse emissions is our best chance to simultaneously reduce gaping inequalities, re-imagine our broken democracies, and rebuild our gutted local economies. She exposes the ideological desperation of the climate-change deniers, the messianic delusions of the would-be geoengineers, and the tragic defeatism of too many mainstream green initiatives. And she demonstrates precisely why the market has not—and cannot—fix the climate crisis but will instead make things worse, with ever more extreme and ecologically damaging extraction methods, accompanied by rampant disaster capitalism. Available On Amazon

From The Publisher:
Purchases on Amazon go to defray the cost of bringing you InnerSelf.comelf.com, MightyNatural.com, and ClimateImpactNews.com at no cost and without advertisers that track your browsing habits. Even if you click on a link but don't buy these selected products, anything else you buy in that same visit on Amazon pays us a small commission. There is no additional cost to you, so please contribute to the effort. You can also use this link to use to Amazon at any time so you can help support our efforts.

 

YOU MAY ALSO LIKE

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

bright light from under small building light terraced rice fields under starry sky
Hot nights mess up rice’s internal clock
by Matt Shipman-NC State
New research clarifies how hot nights are curbing crop yields for rice.
A polar bear on a large mound of ice and snow
Climate change threatens the Arctic’s Last Ice Area
by Hannah Hickey-U. Washington
Parts of an Arctic region called the Last Ice Area are already showing a decline in summer sea ice, researchers report.
corn cob and leaves on ground
To sequester carbon, leave crop leftovers to rot?
by Ida Eriksen-U. Copenhagen
Plant materials that lie to rot in soil makes good compost and play a key role in sequestering carbon, research finds.
image
Trees are dying of thirst in the Western drought – here’s what’s going on inside their veins
by Daniel Johnson, Assistant Professor of Tree Physiology and Forest Ecology, University of Georgia
Like humans, trees need water to survive on hot, dry days, and they can survive for only short times under extreme heat…
image
Climate explained: how the IPCC reaches scientific consensus on climate change
by Rebecca Harris, Senior Lecturer in Climatology, Director, Climate Futures Program, University of Tasmania
When we say there’s a scientific consensus that human-produced greenhouse gases are causing climate change, what does…
Climate heat is changing Earth’s water cycle
by Tim Radford
Humans have begun to alter Earth’s water cycle, and not in a good way: expect later monsoon rains and thirstier…
Climate change: as mountain regions warm, hydroelectric power plants may be vulnerable
Climate change: as mountain regions warm, hydroelectric power plants may be vulnerable
by Simon Cook, Senior Lecturer in Environmental Change, University of Dundee
Around 27 million cubic metres of rock and glacier ice collapsed from Ronti Peak in the northern Indian Himalayas on…
Nuclear legacy is a costly headache for the future
by Paul Brown
How do you safely store spent nuclear waste? No-one knows. It’ll be a costly headache for our descendants.

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.