Would You Eat Meat Grown From Cells In A Laboratory? Here's How It Works

Would You Eat Meat Grown From Cells In A Laboratory? Here's How It Works There is rationale for thinking about alternatives to meat. Shutterstock

Every year, 66 billion terrestrial animals are slaughtered for food. Predictions are that meat consumption will rise, with increasing demand for meat from China and other Asian countries as their standards of living increase.

The impact of grazing animals on the environment is devastating. They produce 18% of the world’s greenhouse gases, and livestock farming is a major contributor to species extinctions.

What’s more, humans have caused tremendous suffering to animals through industrial scale animal farming.

Some experts have even said meat may not be essential for most people, and a vegetarian diet is healthier than a meat-based one. So the rationale for developing meat alternatives – “fake meat” – is strong.

Fake meat can be made from plant-based materials that mimic the taste of meat. But for those who want something closer to the real thing, meat cells can be grown in a laboratory – this is called “in vitro agriculture”. Here’s how it works.

Growing meat, but not in an animal

The concept of cultured meat has been around for some time. In 1931, Winston Churchill even said:

We shall escape the absurdity of growing a whole chicken in order to eat the breast or wing. By growing these parts separately under a suitable medium.

The world’s first cultured beef burger was produced by Professor Mark Post at Maastricht University in The Netherlands. It was cooked and eaten publicly at a London restaurant in 2013. It took three months to grow the meat and cost €250,000.

Professor Mark Post’s TEDx Talk on “test tube meat”, 2013.

Since then, the race has been on to produce commercially available synthetic meat. Many companies have taken out patents to grow meat on a commercially viable scale and some have even received funding from people like Bill Gates and Richard Branson.

Thanks to advances in tissue engineering, we can take all sorts of cells ranging from skin and blood to muscle and the brain from different animals, and grow them under controlled laboratory conditions.

The type of meat people want to eat is from muscle. This means synthetic meat production involves producing large quantities of muscle cells in a laboratory.

Growing this involves three main processes:

  • selecting precursor (or “starter” cells) from the animal – in this case, muscle precursor cells – and providing them with the correct environment for growth

  • growing them in bulk in an environment that mimics an animal body

  • the precursor cells then have to be switched on (or “induced”) to turn into skeletal muscle by chemical or mechanical signals.

Would You Eat Meat Grown From Cells In A Laboratory? Here's How It Works Simple culture of cells in a flask where they are grown in a single layer and covered with orange nutrient liquid.

The growing and conversion of cells into skeletal muscle are the major challenges the industry currently faces. The appearance of this meat would likely resemble burger-type meat, like a patty, rather than carcass meat, which is very structured.

For example, when you cut into a steak, you might see the meat organised into long strands or fibres. But with cultured meat, the organisation of the cells may be more haphazard.

It’s entirely feasible for some types of cells to grow fast and reproduce themselves once every 24 hours in a laboratory setting – this is much faster than in an animal. The challenge is to achieve this on a large scale in bio-reactors (a vessel to contain the laboratory-grown cells), and then to get all the cells converted from precursor cells to muscle cells.

If eating the products of tissue cells seems unsavoury, consider that people already consume products of cell culture technologies. Over 50% of biological molecules for vaccines and for treating diseases (such as antibodies for cancer treatment) are produced in mammalian cell cultures..

So we are already on track to consume “fake”, or artificially synthesised, molecules.

What takes more resources – growing cows or growing cells?

It takes around 18 months for a cow to grow fully, after a pregnancy of 10 months.

So in total, it takes two years and four months of growth in a space roughly 10.5 by 15.2 square metres, in a barn. When a cow is killed, it produces a 300kg carcass and 180kg of butchered meat.

On the other hand, it takes 8 trillion cells in a laboratory to make 1 kilogram of muscle meat.

A container of 5,000 litres (the size of an average rainwater tank, or somewhere around 5 cubic metres) would be needed to grow this number of cells. This would account for cells grown in layers, and covered by a liquid to provide nutrients.

If cells in a laboratory divide every 24 hours, then it would take just over 26 days to grow 1kg of meat.

Would You Eat Meat Grown From Cells In A Laboratory? Here's How It Works This image shows how cells can be grown in three dimensions, and resemble an organ.

This growth rate is feasible for some types of cells, such as skin and gut, but has not yet been reported for muscle cells in a laboratory.

Therefore, lab-grown meat could take fewer natural resources (like vegetation and water) to grow the equivalent amount of animal meat. The commercial availability of “fake meat” could profoundly decrease the enormous environmental impact of grazing animals and reduce animal cruelty.

As 90% of Australians are concerned about animal welfare, and Australians are largely worried about climate change, fake meat has the potential to make a real impact to the meat industry.The Conversation

About The Author

Leigh Ackland, Professor in Molecular Biosciences, Deakin University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

books_food

enafarzh-CNzh-TWnltlfrdehiiditjakomsfaptruesswsvthtrurvi

LATEST VIDEOS

What Is The Future Of Climate Change?
by Simon Donner
You would think with all the chatter going on about climate that we’d all have a good understanding on the elements of…
Why Marianne Williamson's Candidacy for President Is Important
Why Marianne Williamson's Candidacy for President Is Important
How do you know something exists if you never hear about it? How do you know about the truth, which is often "the other…
Would You Eat Meat Grown From Cells In A Laboratory? Here's How It Works
Would You Eat Meat Grown From Cells In A Laboratory? Here's How It Works
by Leigh Ackland
For many of us, eating a meal containing meat is a normal part of daily life. But if we dig deeper, some sobering…
Climate System “Getting Unhinged” as Massive Heat Wave Causes Record Melting of Greenland Ice Sheet
by Democracy Now!
The massive heat dome that shattered all-time temperature records across much of Europe last week has settled in over…
Why We're Heading For A Climate Catastrophe
by BBC Newsnight
Scientists say the world is completely off track.
A Climate Reckoning In The Heartland
by CBS News
"A historic flood in March 2019 left much of America's heartland under water. Partiularly hard-hit were Midwestern…
What Would Happen If Antarctica Melted?
by Put Put 1
"What Would Happen If Antarctica Melted?
Dr. Peter Wadhams: Arctic Research & the Methane Risk
by UPFSI
Peter Wadhams is back on ScientistsWarning.TV with a comprehensive analysis of the reticent approach that part of the…

LATEST ARTICLES

What Is The Future Of Climate Change?
by Simon Donner
You would think with all the chatter going on about climate that we’d all have a good understanding on the elements of…
People Of Color Don’t Get Credit For Climate Concern
People Of Color Don’t Get Credit For Climate Concern
by U. Oregon
While their contributions to the climate change movement remain largely unrecognized, people of color are just as…
New Research Shows That Antarctica's Largest Floating Ice Shelf Is Highly Sensitive To Warming Of The Ocean
New Research Shows That Antarctica's Largest Floating Ice Shelf Is Highly Sensitive To Warming Of The Ocean
by Dan Lowry
Scientists have long been concerned about the potential collapse of the West Antarctic Ice Sheet and its contribution…
It'll Be Hard, But We Can Feed The World With Plant Protein
It'll Be Hard, But We Can Feed The World With Plant Protein
by Richard Trethowan
A UN report released last week found a quarter of the world’s carbon emissions come from the food chain, particularly…
Underground Water Sources For Billions Could Take More Than A Century To Respond Fully To Climate Change
Underground Water Sources For Billions Could Take More Than A Century To Respond Fully To Climate Change
by Mark O. Cuthbert, et al
Groundwater is the biggest store of accessible freshwater in the world, providing billions of people with water for…
Why Is The Australian Energy Regulator Suing Wind Farms?
Why Is The Australian Energy Regulator Suing Wind Farms?
by Samantha Hepburn
The Australian Energy Regulator (AER) is suing four of the wind farms involved in the 2016 South Australian blackout -…
Groundwater Reserves In Africa May Be More Resilient To Climate Change Than First Thought
Groundwater Reserves In Africa May Be More Resilient To Climate Change Than First Thought
by Mark O. Cuthbert and Richard Taylor
Groundwater reserves in Africa are estimated to be 20 times larger than the water stored in lakes and reservoirs above…
Australia Urgently Needs Real Sustainable Agriculture Policy
Australia Urgently Needs Real Sustainable Agriculture Policy
by InnerSelf Staff
Australia has made a global commitment to “sustainable agriculture”, an endeavour seen as increasingly crucial to…