Can we tweak marine chemistry to help stave off climate change?

Can we tweak marine chemistry to help stave off climate change?

The natural process of mineral weathering starts with rain which absorbs carbon dioxide from the air and then reacts with rock and biota in soils, forming dissolved mineral bicarbonate and a much smaller quantity of carbonate ions. These then run off into the ocean where the carbon is stored in these forms for many millennia before precipitating to the ocean floor as carbonate minerals. The idea of enhanced weathering is to greatly speed up this process by adding crushed rocks or other sources of alkalinity to react with CO2 in seawater, ultimately consuming atmospheric CO2 and adding it as dissolved mineral bicarbonate and carbonate to the already very large reservoir of these compounds in the ocean. Greg Rau, CC BY

The world’s nations are nowhere near to meeting the global Paris Agreement’s goals on climate change of holding global temperature increases to 2 degrees Celsius compared to 19th-century averages, much less its more aspirational goal of holding temperatures to a 1.5°C rise.

The most recent Emissions Gap Report from the United Nations Environment Program notes “global greenhouse gas emissions show no signs of peaking.” According to another study, the chance that humans can limit warming to no more than 2°C by 2100 is no more than 5 percent, and it’s likely that temperatures will rise somewhere between 2.6°-3.7°C by the end of the century.

These foreboding trends have led to an increasing focus on ways to remove carbon dioxide from the atmosphere. Among the methods being explored is the use of the ocean to absorb and/or store carbon by adding crushed rocks or other sources of alkalinity to react with CO2 in seawater, ultimately consuming atmospheric CO2.

Could this type of large-scale carbon dioxide removal work? A closer look illustrates the potential environmental trade-offs of deploying marine carbon dioxide removal and the complex technical, economic and international governance issues it raises.

Land versus ocean carbon capture and storage

We and other researchers see the ocean as a logical place to look for additional carbon dioxide removal opportunities since it currently passively absorbs about 10 gigatons (10,000,000,000 tons) of CO2 per year or about one-quarter of the world’s annual emissions. In addition, the oceans contain vastly more carbon than the atmosphere, soils, plants and animals combined, and may have the potential to store trillions of tons more.

The latest report from the Intergovernmental Panel on Climate Change focused heavily on land-based methods for carbon capture and storage. One prominent technique is called bioenergy with carbon capture and storage, BECCS, where plant biomass would be burned to produce usable energy and the resulting CO2 is pumped underground.

However, there are a number of concerns about the potential negative impacts of large-scale deployment of BECCS and other land-plant-based methods, notably the worry that huge amounts of agricultural land would be diverted to grow dedicated crops. This could reduce access of low-income populations to food, place demands on water and have serious negative impacts on biodiversity due to ecosystem disruption.

Speeding up geochemistry

Perhaps the best-known – and at times, controversial – method for marine carbon dioxide removal is stimulating photosynthesis to increase CO2 absorption. For example, in regions where marine plant growth is limited by iron, this element can be added to enhance CO2 uptake and carbon storage where at least some of the biomass carbon formed eventually sinks to and is buried in the ocean floor. Other approaches include restoring, adding or culturing marine plants or microbes, such as Blue Carbon.

Another technique being considered is to try to accelerate the chemical reaction of CO2 with common rock minerals, a natural process known as mineral weathering. When rain reacts with alkaline rocks and CO2, there’s a chemical reaction, which can be catalyzed by biological activity in soils, that converts the CO2 to dissolved mineral bicarbonate and carbonate ions which then typically run off into the ocean. Mineral weathering plays a major role in removing excess atmospheric CO2, but only on geologic time scales – 100,000 years or more.

Various ways to accelerate mineral weathering and ocean carbon storage that have been proposed include adding to surface waters finely ground alkaline minerals or adding common, industrially produced alkaline chemicals, such as quicklime (CaO), calcium hydroxide (Ca(OH)2), and lye or caustic soda (NaOH). Once added to the ocean, these compounds react with excess CO2 in seawater and air, principally forming stable, dissolved mineral bicarbonate, thus removing and sequestering CO2.

Such ocean alkalization could be achieved via distribution from shore or by ships. Another proposal is to manufacture alkalinity at sea using local marine energy sources: for example, employing electricity derived from the ocean’s very significant vertical temperature gradient. Reacting waste CO2 with minerals on shore and then pumping the resulting dissolved alkaline material into the ocean is also an option. All of the preceding would simply add to the already vast bicarbonate and carbonate reservoir in the ocean.

An additional benefit of ocean alkalization is that it also helps counter ocean acidification, the “other CO2 problem” stemming from the ocean’s absorption of excess CO2 from the air. Acidification can interfere with the ability of calcifying organisms, such as oysters, clams and corals to construct their skeletons or shells, as well as impact other pH-sensitive marine biogeochemical processes.

What we don’t know

The actual practical capacity of ocean alkalization to counter climate change and acidification remains uncertain.

Considering the logistics, cost and impacts of extracting or manufacturing alkalinity and dispersing it, studies have estimate that air CO2 drawdowns of perhaps 30 parts per million or less might be realistic. This would be helpful given that the level of CO2 in preindustrial times was 260-270 parts per million and is now 410 parts per million.

We calculate a global drawdown of atmospheric CO2 by 30 parts per million would require near-zero emissions from human activities, plus the removal and storage of some 470 gigatons of CO2. To achieve this, a minimum of roughly 500 gigatons of rock would need to be used to generate the required alkalinity. Current global rock extraction is on the order of 50 gigatons per year, so holding other rock uses steady while increasing this extraction rate by 50 percent could theoretically allow us to achieve the drawdown in 20 years. This obviously needs to be tested at vastly smaller scales to determine what global capacity and rates might be realizable.

Nor is this just a matter of alkalinity production; there are potential negative impact of ocean alkalization on marine ecosystems that need to be considered. In addition to the effects of pH and alkainity elevation (either instantaneous or gradual), alkalinity addition would likely carry with it other elements or compounds, such as trace metals and silica, that can also affect marine biogeochemistry. Little research has been conducted on these points, but the results so far generally find no or positive effects on marine life. Further investigation is needed to fully understand the environmental and ecological consequences, including conducting small and medium-sized field trials.

Any deployment would need to be subjected to strict monitoring requirements to assess both the environmental benefits and well as the negative impacts of large scale deployment. Some measure of confidence in the use of ocean alkalization might be found in the fact that natural mineral weathering and alkalinity delivery to the ocean has naturally occurred for billions of years (currently at the rate of about 1 gigaton of CO2 consumed and stored per year), apparently with the marine ecosystem well adapted to if not requiring this input. Nevertheless, the possibility of significantly and safely scaling up this natural process requires further research.

Legal questions

At a legal level, countries would need to address international governance issues associated with this approach. Presumably, the Paris Agreement would be one of the regimes involved given its focus on addressing climate change. Any role ocean akalinity could play in countries’ pledges to mitigate emissions would require provisions that mandate assessment of potential impacts of deployment. The Paris Agreement could facilitate this given its references in various provisions to the need to assess the impacts of response measures in the context of ecosystems, sustainability, development and human rights.

Ocean-focused regimes such as the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter and the Law of the Sea Convention, and its Protocol, might also seek to be engaged in assessment and regulation, as well as the Convention on Biological Diversity. Coordinating the potential interventions of all of these regimes’ responses would be another challenge posed by deployment of ocean alkalinity, as would the many other carbon dioxide removal approaches that could have transboundary impacts.

The specter of potentially catastrophic climate change by the end of the century has stimulated interest in an array of new technological options to remove CO2 from the ocean and atmosphere at large scale. But they could also pose risks of their own. Adding alkaline materials to speed up mineral weathering is one such approach that deserves serious consideration, though only after thorough scrutiny.

Authors: Wil Burns, Professor of Research & Co-Director, Institute for Carbon Removal Law & Policy, American University School of International Service

This Article Originally Appeared On The Conversation

Related Books

List Price: $27.00
Sale Price: $27.00 $16.20 You save: $10.80

"The Uninhabitable Earth hits you like a comet, with an overflow of insanely lyrical prose about our pending Armageddon."—Andrew Solomon, author of The Noonday Demon

It is worse, much worse, than you think. If your anxiety about global warming is dominated by fears of sea-level rise, you are barely scratching the surface of what terrors are possible. In California, wildfires now rage year-round, destroying thousands of homes. Across the US, “500-year” storms pummel communities month after month, and floods displace tens of millions annually.

This is only a preview of the changes to come. And they are coming fast. Without a revolution in how billions of humans conduct their lives, parts of the Earth could become close to uninhabitable, and other parts horrifically inhospitable, as soon as the end of this century.

In his travelogue of our near future, David Wallace-Wells brings into stark relief the climate troubles that await—food shortages, refugee emergencies, and other crises that will reshape the globe. But the world will be remade by warming in more profound ways as well, transforming our politics, our culture, our relationship to technology, and our sense of history. It will be all-encompassing, shaping and distorting nearly every aspect of human life as it is lived today.

Like An Inconvenient Truth and Silent Spring before it, The Uninhabitable Earth is both a meditation on the devastation we have brought upon ourselves and an impassioned call to action. For just as the world was brought to the brink of catastrophe within the span of a lifetime, the responsibility to avoid it now belongs to a single generation.

List Price: $24.95
Sale Price: $24.95 $18.83 You save: $6.12
Product Description: Explore global warming with graphics, illustrations, and charts that separate climate change fact from fiction, presenting the truth about global warming in a way that's both accurate and easy to understand. Respected climate scientists Michael E. Mann and Lee R. Kump address important questions about global warming and climate change, diving into the information documented by the IPCC (Intergovernmental Panel on Climate Change) and breaking it down into clear graphics that explain complex climate questions in simple illustrations that present the truth of the global warming problem clearly.

These experts take scientific findings about climate change and global warming and use analogies, striking images, and understandable graphics to make the global warming question clear to both skeptics and scientists. Dire Predictions shows the evidence and the causes that respected scientists have documented in IPCC findings and climate change studies — this powerful, illustrated book is updated with the latest IPCC information and is a must-read for anyone interested in understanding global warming and climate change and in joining the debate over the best way to combat global warming.

List Price: $18.00
Sale Price: $18.00 $12.77 You save: $5.23
Product Description:


A major book about the future of the world, blending intellectual and natural history and field reporting into a powerful account of the mass extinction unfolding before our eyes

Over the last half-billion years, there have been Five mass extinctions, when the diversity of life on earth suddenly and dramatically contracted. Scientists around the world are currently monitoring the sixth extinction, predicted to be the most devastating extinction event since the asteroid impact that wiped out the dinosaurs. This time around, the cataclysm is us. In prose that is at once frank, entertaining, and deeply informed, New Yorker writer Elizabeth Kolbert tells us why and how human beings have altered life on the planet in a way no species has before. Interweaving research in half a dozen disciplines, descriptions of the fascinating species that have already been lost, and the history of extinction as a concept, Kolbert provides a moving and comprehensive account of the disappearances occurring before our very eyes. She shows that the sixth extinction is likely to be mankind's most lasting legacy, compelling us to rethink the fundamental question of what it means to be human.

List Price: $18.99
Sale Price: $18.99 $16.96 You save: $2.03
Product Description: The most important book yet from the author of the international bestseller The Shock Doctrine, a brilliant explanation of why the climate crisis challenges us to abandon the core “free market” ideology of our time, restructure the global economy, and remake our political systems.

In short, either we embrace radical change ourselves or radical changes will be visited upon our physical world. The status quo is no longer an option.

In This Changes Everything Naomi Klein argues that climate change isn’t just another issue to be neatly filed between taxes and health care. It’s an alarm that calls us to fix an economic system that is already failing us in many ways. Klein meticulously builds the case for how massively reducing our greenhouse emissions is our best chance to simultaneously reduce gaping inequalities, re-imagine our broken democracies, and rebuild our gutted local economies. She exposes the ideological desperation of the climate-change deniers, the messianic delusions of the would-be geoengineers, and the tragic defeatism of too many mainstream green initiatives. And she demonstrates precisely why the market has not—and cannot—fix the climate crisis but will instead make things worse, with ever more extreme and ecologically damaging extraction methods, accompanied by rampant disaster capitalism.

Klein argues that the changes to our relationship with nature and one another that are required to respond to the climate crisis humanely should not be viewed as grim penance, but rather as a kind of gift—a catalyst to transform broken economic and cultural priorities and to heal long-festering historical wounds. And she documents the inspiring movements that have already begun this process: communities that are not just refusing to be sites of further fossil fuel extraction but are building the next, regeneration-based economies right now.

Can we pull off these changes in time? Nothing is certain. Nothing except that climate change changes everything. And for a very brief time, the nature of that change is still up to us.

English Afrikaans Arabic Chinese (Simplified) Chinese (Traditional) Dutch Filipino French German Hindi Indonesian Italian Japanese Korean Malay Persian Portuguese Russian Spanish Swahili Swedish Thai Turkish Urdu Vietnamese


Default Image
Passive housing cuts costs – and global warming
by Alex Kirby
Buildings which heat and cool themselves – passive housing – save householders money and cut greenhouse gas emissions.
Print Friendly
Solar lamps light up more African nights
by Paul Brown
Solar lamps are shining more brightly in Africa, tackling poverty, ill-health and natural hazards, thanks to Chinese…
Print Friendly
GMO crops could expect a brighter future
by Paul Brown
Genetically modified (GMO) crops remain controversial, but scientists still have faith that they will help both to…
Print Friendly
Planting trees will not slow global warming
by Tim Radford
Nothing, not even the creation of huge plantations of trees to absorb carbon dioxide, is a viable alternative to…
Print Friendly
Green energy tips good for business
by Paul Brown
Sharing energy-saving ideas such as using seawater pumps to heat buildings is helping big charities and businesses cut…
Print Friendly
Bigger isn't better for energy savings
by Inga Vesper
The desire for more spacious cars and houses is cancelling out energy savings made by environmentally friendly…
Print Friendly
Nuclear waste problems start gold rush
by Paul Brown
Staggering sums of money involved in the long-term challenge of solving the world’s nuclear waste problems make it a…


Jay Inslee Tells Hayes That He Wants To Gut The Filibuster To Fight Climate Change
Washington Governor Jay Inslee is running for president on the single issue of climate change and argues that doing…
Causes and Effects of Climate Change
by National Geographic
What causes climate change (also known as global warming)? And what are the effects of climate change? Learn the human…
Extreme Weather and Global Warming
by NASA Goddard
Is the frequency of extreme weather events a sign that global warming is gaining pace and exceeding predictions? Bill…
Thanks to Climate Change, Wet Winters No Match for Drier California Summers
by KPIX CBS SF Bay Area
If the emerald-green hills around Northern California have you thinking recent rains have put a damper on the fire…
Climate Change Is Not One Issue
"Climate change is not one issue," said David Wallace-Wells, author of "The Uninhabitable Earth," but is…
The Heat: Climate change
by CGTN America
Images gathered by NASA show an increase in foliage in China and India. The greening effect is mainly due to ambitious…
No company is doing enough to combat climate change: Jeremy Grantham
by CNBC Television
Jeremy Grantham, co-founder of GMO, on climate change and what needs to be done to combat it.
Power Plants Are POISONING Groundwater All Over America
by The Ring of Fire
According to a new report, 90% of coal-fired power plants across the country have completely contaminated the…


Default Image
Come on, UK weather forecasters – tell it like it is on climate change
by Adam Corner
They have a national reach that most climate campaigners would die for. They are familiar and respected experts on the…
Green New Deal: 6 places already reducing emissions from buildings
Green New Deal: 6 places already reducing emissions from buildings
by David Roberts
One of the elements of the Green New Deal resolution that has caused the most consternation among critics on the right…
Default Image
UK environmentalists target Barclays in fossil fuels campaign
by Matthew Taylor
A UK-wide campaign is being launched to persuade one of the country’s biggest high street banks to stop investing…
Oceanic carbon uptake could falter
Oceanic carbon uptake could falter
by Tim Radford
What does oceanic carbon uptake achieve? Greenhouse gas that sinks below the waves slows global warming a little and…
Britain (Yes, Rainy Britain) Could Run Short of Water by 2050, Official Says
Britain (Yes, Rainy Britain) Could Run Short of Water by 2050, Official Says
by Global Warming & Climate Change
“Climate change plus growth equals an existential threat,” Mr. Bevan said. To avoid severe water shortages, he added,…
Default Image
Record high US temperatures outpace record lows two to one, study finds
by Associated Press
Over the past 20 years, Americans have been twice as likely to sweat through record-breaking heat rather than shiver…
Climate change: Water shortages in England 'within 25 years'
Climate change: Water shortages in England 'within 25 years'
by BBC News - Science & Environment
Image copyright PA Image caption Low water levels at Wayoh Reservoir near Bolton in the UK heatwave in July 2018 Within…
Default Image
Why you'll never meet a white supremacist who cares about climate change
by Rebecca Solnit
As the news of the Christchurch mosque massacre broke and I scoured the news, I came across a map showing that the…