Europe’s Carbon-rich Peatlands Show ‘Widespread’ And ‘Concerning’ Drying Trends

Europe’s Carbon-rich Peatlands Show ‘widespread’ And ‘concerning’ Drying Trends

European peatlands could turn from carbon sinks to sources as a quarter have reached levels of dryness unsurpassed in a record stretching back 2,000 years, according to a new study.

This trend of “widespread” and “substantial” drying corresponds to recent climate change, both natural and human-caused, but may also be exacerbated by the peatlands being used for agriculture and fuel.

It comes as another study estimates that the amount of carbon stored in peatlands across northern regions could be as much as double previous, widely reported estimates.

The papers, both published in Nature Geoscience, indicate a need for efforts to conserve peatlands as sites of carbon storage at higher latitudes.

Taken together, the findings are “a real concern”, according to one scientist not involved in the research, given the key role these ecosystems play in the global carbon cycle.

Threatened peat

Peatlands form when waterlogged conditions slow down plant decomposition, meaning layers of dead plants accumulate over many years as peat. They are a vital component in scientists’ understanding of how the planet’s land surface emits and takes up carbon.

Despite only covering around 3% of the Earth’s surface, peatlands contain roughly a fifth of its soil carbon. In Europe, these ecosystems store five times more CO2 than forests.

However, the existence of many peatlands is under threat, partly thanks to centuries of human exploitation of peat as a fuel source or fertiliser.

Damaged peatlands are a significant source of emissions, releasing around 3.5% of global anthropogenic CO2 emissions each year.

Dr Graeme Swindles, a University of Leeds researcher and lead author of one of the papers, lays out the various issues facing these ecosystems in Europe and further afield:

“Cutting, drainage, burning, agriculture, afforestation. All driven by need for peat as a resource or for land-use practices not in line with keeping healthy peatlands. Climate warming and drying is also a major factor in tandem with these.”

While waterlogged peat will continue to store carbon, disturbances resulting from climate fluctuations or humans damaging these ecosystems allow oxygen to enter it, triggering the release of CO2.

Many European peatlands have already shown evidence of this transition, as the vegetation they support shifting from peat mosses to grass and shrubs.

Drying trend

The first paper, produced by Swindles and a large international group of scientists, was welcomed by University of Leicester wetland ecologist Prof Susan Page as a “robust piece of work” – and one with some significant implications.

It identifies a drying trend across European peatlands, from Scandinavia to the Baltics, that has become particularly pronounced in the last 200 years. Page explains to Carbon Brief:

“This trend should be of concern given that peatlands deliver a range of beneficial, but often undervalued ecosystem services, including carbon storage and sequestration and, therefore, have an important role to play in climate mitigation.”

While the results are not merely the result of human interventions, the authors note that European peatlands “may now be moving away from natural baselines”. The results were most severe for peatlands across Great Britain and Ireland.

As there is no long-term hydrological monitoring data available, the scientists use the presence of shells (or “tests”) from tiny, bog-dwelling amoeba to gauge historic water levels.

They analysed reconstructions of 31 European peatlands, concluding 60% of the sites were drier from 1800 to 2000 than they had been for the last 600 years.

Furthermore, 40% of sites were at their driest in 1,000 years, and 24% were drier than they had ever been across the entire 2,000-year record.

While they concluded that this effect mirrored an increasingly dry climate in the region, they also note that human influence in peatlands is likely to have exacerbated the trend. In total, they identified significant damage by people in 42% of the sites and a further 29% suffering from minor damage.

However, Swindles notes that they “mostly worked on the most intact sites in Europe…so there are many more that have suffered drainage far worse than this”.

These results could be particularly significant in light of the second paper, which suggests the role played by European peatlands in storing carbon may be even greater than previously imagined.

Doubling storage

In their study, Prof Jonathan Nichols and his colleague Prof Dorothy Peteet, both at Columbia University in New York, estimate that northern peatlands store approximately 1,055 gigatonnes (Gt) of carbon.

They compared this to a previous, widely cited estimate made by Dr Zicheng Yu from Lehigh University and his collaborators back in 2010, who arrived at a figure of 547Gt for the same region.

Nichols explains their work to Carbon Brief, noting that past analyses did not properly account for undersampled regions, such as Asia and Southern Europe.

Peatland carbon, he says, is normally measured using a “time-history method” that involves averaging together the rate at which carbon has accumulated over time at a variety of sites, combined with the area of the peatland to get the total amount of carbon.

According to their paper, past attempts that have used this method have been affected by “several known sources of sampling bias”.

Specifically, the pair highlight the assumption that peat accumulation rates over time are the result of the global climate and are, therefore, similar across the northern hemisphere.

Nichols explains to Carbon Brief how their method improves on this assumption:

“The big difference is how I average all the different sites together…Most of the sites that people have measured carbon accumulation rate at are in Northwest Europe and Canada. So you basically bias your calculations towards those places and away from other places…[We tried to] fix that problem by weighting our averages based on area, instead of arbitrarily based on how many measurements had been made.”

The researchers used over 4,000 radiocarbon measurements to determine the age of peat from 645 peatland sites.

They incorporated previously unused data from the Neotoma Paleoecology Database, together with new computer algorithms for estimating the history of peat carbon accumulation and when peatlands were formed.

Nichols notes that while their final figure for carbon storage is considerably higher than previous data-driven efforts, modelling studies have already yielded higher figures:

“If you used an earth system model to predict how much peat there should be, it’s usually more than what we get when we measure, so hopefully this will make it so they are more in line.”

Potential shortcomings

Carbon Brief talked to a number of scientists who expressed surprise at Nichols and Peteet’s analysis, given the far larger estimate of carbon storage it yielded. Others raised questions about the methods the pair had used to arrive at their final figure.

Yu, who led the team that arrived at the 2010 peatland estimate, tells Carbon Brief that while he is pleased to see such a paper achieving prominence, he is concerned there are “major technical shortcomings” that have led to this considerable revision.

He tells Carbon Brief that while scientists working in this area have “long recognised” that accounting for regional differences between peatlands is the “right way to go”, lack of sufficient data has hampered their efforts:

“In this regard, this new paper has made a potentially important progress and improvement by attempting the calculations of carbon accumulation rates for each of eight peat regions, with a goal to account for spatial bias.”

(As part of their analysis, the researchers divided northern peatlands into eight regions, based mainly on political boundaries, that tend to be reported in scientific literature. They also devised two other ways of dividing the region up to eliminate any biases.)

Yu goes on to say that it is “unfortunate and perhaps unavoidable” that, from what he could tell, Nichols and Peteet had to use a single average carbon density value for all sites, despite the known variation across peatlands.

He adds that by incorporating previously overlooked data, the authors of the new paper have included sites that would not normally be considered under the category of “northern” peatlands. Among these are some parts of southern Europe and even a couple in North Africa.

Yu says that, in his view, the combination of these two factors has led to an overestimation of the amount of carbon storage provided by northern peat.

Responding to this criticism, Nichols tells Carbon Brief that beyond the average carbon density, they also took into account the considerable variation and uncertainty by incorporating a large distribution of values based on 16,000 measurements. As for the wider array of locations, he says this “gets right at the point of the paper”:

“We set out to measure carbon in peatlands based on where we know peatlands to exist, not where we assume them to be.”

In practice, this means including data from unconventional areas, including regions where peatlands are sparse. Overall, he says their methods were designed to produce “much wider uncertainties” but also a final result that is closer to the “real” answer than previous attempts.

‘Real concern’

The publication of these two papers serves to highlight the importance of peat for scientists’ understanding of the climate system, as well as the need to preserve and restore peatlands.

Prof Pete Smith, a soils expert at the University of Aberdeen and Intergovernmental Panel on Climate Change author who was not involved in either study, tells Carbon Brief:

“Taken together, the studies suggest that high-latitude peatlands are acting as a significant carbon sink, as they are growing in area and carbon stock – but, if they are also drying, there is potential that they could turn from net carbon sinks to sources. Given the huge store of carbon in high latitude peatlands, that is a real concern.”

He notes that while the Swindles paper suggests drying may not yet be beyond “normal peatland drying cycles”, the shift away from long-term baselines “may be pushing them closer to a threshold whereby peat formation is replaced by peat degradation, which would lead to massive losses of carbon to the atmosphere”.

Page says a particular concern is that a combination of these perturbations and human activities have a “cumulative effect”.

Swindles and his team write that with European peatlands in a “state of transition”, there are already measures underway to restore some of them by damming artificial drains and gullies.

They note that these actions may be “vital” in protecting against both human impacts and future global warming. They say these initiatives must take their findings into account.

For his part, Nichols says that considering the threats facing peatlands, it is important for scientists to investigate the total volume of peat available across the world, in order to “put a number on how much there is to lose”:

“Peatlands are not usually part of global climate models. If we want to make realistic predictions of future climate, peatlands need to be a part of it.”

References

Swindles, G.T. et al. (2019) Widespread drying of European peatlands in recent centuries, Nature Geoscience, doi.org/10.1038/s41561-019-0462-z

Nichols, J.E. and Peteet, D.M. (2019) Rapid expansion of northern peatlands and doubled estimate of carbon storage, Nature Geoscience, doi.org/10.1038/s41561-019-0454-z

This article originally appeared on Carbon Brief

add_info

Peatlands – climate regulation and biodiversity

EU Science Hub - Peatlands Mapping

Related Books

Life After Carbon: The Next Global Transformation of Cities

by Peter Plastrik , John Cleveland
1610918495The future of our cities is not what it used to be. The modern-city model that took hold globally in the twentieth century has outlived its usefulness. It cannot solve the problems it helped to create—especially global warming. Fortunately, a new model for urban development is emerging in cities to aggressively tackle the realities of climate change. It transforms the way cities design and use physical space, generate economic wealth, consume and dispose of resources, exploit and sustain the natural ecosystems, and prepare for the future. Available On Amazon

The Sixth Extinction: An Unnatural History

by Elizabeth Kolbert
1250062187Over the last half-billion years, there have been Five mass extinctions, when the diversity of life on earth suddenly and dramatically contracted. Scientists around the world are currently monitoring the sixth extinction, predicted to be the most devastating extinction event since the asteroid impact that wiped out the dinosaurs. This time around, the cataclysm is us. In prose that is at once frank, entertaining, and deeply informed, New Yorker writer Elizabeth Kolbert tells us why and how human beings have altered life on the planet in a way no species has before. Interweaving research in half a dozen disciplines, descriptions of the fascinating species that have already been lost, and the history of extinction as a concept, Kolbert provides a moving and comprehensive account of the disappearances occurring before our very eyes. She shows that the sixth extinction is likely to be mankind's most lasting legacy, compelling us to rethink the fundamental question of what it means to be human. Available On Amazon

Climate Wars: The Fight for Survival as the World Overheats

by Gwynne Dyer
1851687181Waves of climate refugees. Dozens of failed states. All-out war. From one of the world’s great geopolitical analysts comes a terrifying glimpse of the strategic realities of the near future, when climate change drives the world’s powers towards the cut-throat politics of survival. Prescient and unflinching, Climate Wars will be one of the most important books of the coming years. Read it and find out what we’re heading for. Available On Amazon

From The Publisher:
Purchases on Amazon go to defray the cost of bringing you InnerSelf.comelf.com, MightyNatural.com, and ClimateImpactNews.com at no cost and without advertisers that track your browsing habits. Even if you click on a link but don't buy these selected products, anything else you buy in that same visit on Amazon pays us a small commission. There is no additional cost to you, so please contribute to the effort. You can also use this link to use to Amazon at any time so you can help support our efforts.

 

 

 

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook-icontwitter-iconrss-icon

 Get The Latest By Email

{emailcloak=off}

LATEST VIDEOS

Talking About Energy Change Could Break The Climate impasse
Talking About Energy Change Could Break The Climate Impasse
by InnerSelf Staff
Everyone has energy stories, whether they’re about a relative working on an oil rig, a parent teaching a child to turn…
Crops Could Face Double Trouble From Insects And A Warming Climate
Crops Could Face Double Trouble From Insects And A Warming Climate
by Gregg Howe and Nathan Havko
For millennia, insects and the plants they feed on have been engaged in a co-evolutionary battle: to eat or not be…
To Reach Zero Emissions Government Must Address Hurdles Putting People Off Electric Cars
To Reach Zero Emissions Government Must Address Hurdles Putting People Off Electric Cars
by Swapnesh Masrani
Ambitious targets have been set by the UK and Scottish governments to become net-zero carbon economies by 2050 and 2045…
Spring Is Arriving Earlier Across The US, And That's Not Always Good News
Spring Is Arriving Earlier Across The US, And That's Not Always Good News
by Theresa Crimmins
Across much of the United States, a warming climate has advanced the arrival of spring. This year is no exception.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
A Georgia Town Gets Half Of Its Electricity From President Jimmy Carter's Solar Farm
A Georgia Town Gets Half Of Its Electricity From President Jimmy Carter's Solar Farm
by Johnna Crider
Plains, Georgia, is a small town that is just south of Columbus, Macon, and Atlanta and north of Albany. It is the…
Majority of US Adults Believe Climate Change Is Most Important Issue Today
by American Psychological Association
As the effects of climate change become more evident, more than half of U.S. adults (56%) say climate change is the…
How These Three Financial Firms Could Change The Direction Of The Climate Crisis
How These Three Financial Firms Could Change The Direction Of The Climate Crisis
by Mangulina Jan Fichtner, et al
A silent revolution is happening in investing. It is a paradigm shift that will have a profound impact on corporations,…

LATEST ARTICLES

Heatwaves Too Hot And Wet For Human Life Are Here
Heatwaves Too Hot And Wet For Human Life Are Here Now
by Tim Radford
Lethal heatwaves carrying air turned too hot and wet to survive are a threat which has arrived, thanks to climate…
How Dangerous Is Low-level Radiation To Children?
How Dangerous Is Low-level Radiation To Children?
by Paul Brown
A rethink on the risks of low-level radiation would imperil the nuclear industry’s future − perhaps why there’s never…
What We Do Now Could Change Earth's Trajectory
What We Do Now Could Change Earth's Trajectory
by Pep Canadell, et al
The numbers of people cycling and walking in public spaces during COVID-19 has skyrocketed.
Marine Heatwaves Spell Trouble For Tropical Reef Fish — Even Before Corals Die
Marine Heatwaves Spell Trouble For Tropical Reef Fish — Even Before Corals Die
by Jennifer M.T. Magel and Julia K. Baum
Despite the many challenges facing the world’s oceans today, coral reefs remain strongholds of marine biodiversity.
Warnings of Worse-Than-Usual Hurricane Season Point to Trouble Ahead
Warnings of Worse-Than-Usual Hurricane Season Point to Trouble Ahead
by Eoin Higgins
Hurricane season is about to start and its risks will only grow and potentially compound any impacts from the pandemic.
Australia, It's Time To Talk About Our Water Emergency
Australia, It's Time To Talk About Our Water Emergency
by Quentin Grafton et al
There’s another climate change influence we must also face up to: increasingly scarce water on our continent.
Fossil Fuels Are Heading Down, But Not Yet Out
Fossil Fuels Are Heading Down, But Not Yet Out
by Kieran Cooke
Renewable energy is making rapid inroads into the market, but fossil fuels still wield enormous global influence.
Human Action Will Decide How Much Sea Levels Rise
Human Action Will Decide How Much Sea Levels Rise
by Tim Radford
Sea levels will go on rising, because of human action. By how much, though, depends on what humans do next.