What Is Climate Sensitivity?

What Is Climate Sensitivity? What is the relationship between carbon dioxide and temperature rise? Werner Wittersheim

Humans are emitting CO2 and other greenhouse gases into the atmosphere. As these gases build up they trap extra heat and make the climate warmer. But how much warmer?

Scientists have long understood that CO2 concentrations in the atmosphere contribute to the Earth’s natural greenhouse effect. This understanding pre-dates the 20th century, and was based on the fundamental science of radiation during the 1800s.

A quick study of the geological record confirms this link; past atmospheres with high CO2 concentrations have always been warmer in the recent geological record.

As our understanding of the enhanced greenhouse effect, and a human influence on climate, has increased - it has become something of a scientific imperative to work out the relationship between carbon dioxide and warming. How much warmer does each unit of CO2 make us?

This relationship between CO2 and warming is known as the climate’s “sensitivity” to CO2.

Determining climate sensitivity helps us understand our future risks and plan for future climate change.

Two types of sensitivity

The climate system is extremely complicated, as is the way humans affect it. To understand the basic processes we simplify the system and consider two different measures of sensitivity.

These measures are called “transient climate response” and “equilibrium climate sensitivity”.

The “transient climate response” is a measure of how much warmer the climate will get when it is still being pushed by human activity.

The equilibrium response shows what the end result is hundreds of years down the track.

Transient climate response

The transient climate response is defined by how much the global mean temperature would rise if we were to elevate the CO2 content of the atmosphere by 1% each year, compounded, from pre-industrial levels (of 280 parts per million) to double that value. At that rate of increase, this would take 70 years.

This measure of sensitivity tells us how much the atmosphere would warm under these circumstances.

It is important to note that the sensitivity to double CO2 is not a climate change “projection”: scientists aren’t saying this doubling will actually happen in this way. Rather, it is a simplified technique used by scientists to understand how temperature might respond to rising CO2 levels.

The transient climate response is therefore not directly comparable to the climate projections that the IPCC or other bodies have released.

One can think of sensitivity to double CO2 as analogous to human sensitivity to a standard, measured dose of a particular drug. Once we know how we react to one dose, we can infer how we might react to more of the same.

Equilibrium climate sensitivity

The transient climate response only tells us part of the picture, the amount of warming essentially at the instant CO2 concentrations have doubled.

However, different parts of the climate system warm at different rates; for example, the atmosphere warms much faster than the oceans.

The oceans average nearly four kilometres in depth and cover more than three-quarters of the Earth’s surface. That’s a colossal amount of water (1.3 billion cubic kilometres, by most estimates); hence, it will take a very long time to warm up.

What climate models and the real world show us is that the deeper reaches of the oceans are only beginning to warm in response to elevated CO2 (see here and here), but will continue to do so for hundreds of years.

In other words, the oceans are not in equilibrium with the atmosphere.

The transient climate response, then, is the warming that the planet experiences once CO2 levels have doubled, but long before temperature equilibrium between the oceans and the atmosphere is attained.

The equilibrium climate sensitivity asks how much warming would occur if CO2 remains at twice the initial level and we wait until the atmosphere and the ocean come into temperature balance.

Going back to our medical analogy, the equilibrium response is equivalent to how one should feel after the treatment has run its entire course.

In the climate system, this can take hundreds, if not thousands, of years.

The equilibrium climate sensitivity should be larger than the transient climate response because the warming occurs over a much longer period, and the climate has time to fully respond to the increased CO2.

Estimating climate sensitivity

There are several ways to estimate climate sensitivity. We can use:

  • climate models. These are mathematical representations of the climate system, based on the laws of physics and chemistry. They contain our best understanding of the physical processes that operate in the atmosphere, oceans, land surface and cryosphere (snow and ice)

  • information from distant past climates, such as from the last ice age. Paleoclimate reconstructions can reveal how Earth’s climate reacted to natural “pushes”, such as changes in the planet’s orbit, and associated changes in CO2.

  • data on how Earth responds to the short, sharp climate push it gets from large volcanoes. For instance, in 1991 Mt Pinatubo spewed millions of tonnes of particles into the atmosphere, reflecting back some incoming sunlight and resulting in a two or three year dip in the Earth’s temperatures

  • recent climate trends. This helps us evaluate how much the climate has warmed over the last 50 years in response to the CO2 we’ve already emitted.

Putting it all together

Every six years or so the Intergovernmental Panel on Climate Change (IPCC) exhaustively examines all lines of evidence, and puts them together to give its best estimate of how sensitive our climate is to increasing levels of greenhouse gases in our atmosphere.

IPCC reports in 1990, 1992, 1995, 2001, and the recent report in 2013, all estimated a likely range of equilibrium climate sensitivity of 1.5C to 4.5C (although the 2007 report modified it slightly to 2.0C to 4.5C). This shows a remarkable consistency over more than 20 years.

This means if we kept CO2 levels at twice initial levels, then waited the hundreds of years for heat in the atmosphere and ocean to balance, the overall warming would be between 1.5C and 4.5C.

The transient climate response is estimated at around 1.0C to 2.5C. This means if we increase atmospheric carbon dioxide from pre-industrial levels by 1% a year until it is doubled (which will take 70 years), we can expect the climate to warm by between 1C and 2.5C.

What does this mean for global warming?

Measures of climate sensitivity allow scientists to readily compare climate models with each other and with observed changes. And because equilibrium climate sensitivity has been in use for more than 30 years it can help us track how our estimates have changed over time.

But climate sensitivity does not directly tell us what temperature changes we might expect over the next century.

The best guide for future warming is provided by projections from the current generation of climate models. They indicate warming will depend strongly on the level of future emissions – on the “scenario”.

For a high emission scenario, CO2 levels increase to more than 900 parts per million by 2100, compared with pre-industrial levels of 280 parts per million. For this scenario, models project end of century warming of 3.2C to 5.4C above an 1850 –1900 baseline.

For a low emission scenario, for which CO2 levels peak then decline to 420 parts per million, models project warming of 0.9C to 2.3C by 2100.The Conversation

About The Author

Robert Colman, Leader of the Climate Change Processes Team, Australian Bureau of Meteorology and Karl Braganza, Manager, Climate Monitoring Section, Australian Bureau of Meteorology

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Books

Climate Change: What Everyone Needs to Know

by Joseph Romm
0190866101The essential primer on what will be the defining issue of our time, Climate Change: What Everyone Needs to Know® is a clear-eyed overview of the science, conflicts, and implications of our warming planet. From Joseph Romm, Chief Science Advisor for National Geographic's Years of Living Dangerously series and one of Rolling Stone's "100 people who are changing America," Climate Change offers user-friendly, scientifically rigorous answers to the most difficult (and commonly politicized) questions surrounding what climatologist Lonnie Thompson has deemed "a clear and present danger to civilization.". Available On Amazon

Climate Change: The Science of Global Warming and Our Energy Future second edition Edition

by Jason Smerdon
0231172834This second edition of Climate Change is an accessible and comprehensive guide to the science behind global warming. Exquisitely illustrated, the text is geared toward students at a variety of levels. Edmond A. Mathez and Jason E. Smerdon provide a broad, informative introduction to the science that underlies our understanding of the climate system and the effects of human activity on the warming of our planet.Mathez and Smerdon describe the roles that the atmosphere and ocean play in our climate, introduce the concept of radiation balance, and explain climate changes that occurred in the past. They also detail the human activities that influence the climate, such as greenhouse gas and aerosol emissions and deforestation, as well as the effects of natural phenomena.  Available On Amazon

The Science of Climate Change: A Hands-On Course

by Blair Lee, Alina Bachmann
194747300XThe Science of Climate Change: A Hands-On Course uses text and eighteen hands-on activities to explain and teach the science of global warming and climate change, how humans are responsible, and what can be done to slow or stop the rate of global warming and climate change. This book is a complete, comprehensive guide to an essential environmental topic. Subjects covered in this book include: how molecules transfer energy from the sun to warm the atmosphere, greenhouse gases, the greenhouse effect, global warming, the Industrial Revolution, the combustion reaction, feedback loops, the relationship between weather and climate, climate change, carbon sinks, extinction, carbon footprint, recycling, and alternative energy. Available On Amazon

From The Publisher:
Purchases on Amazon go to defray the cost of bringing you InnerSelf.comelf.com, MightyNatural.com, and ClimateImpactNews.com at no cost and without advertisers that track your browsing habits. Even if you click on a link but don't buy these selected products, anything else you buy in that same visit on Amazon pays us a small commission. There is no additional cost to you, so please contribute to the effort. You can also use this link to use to Amazon at any time so you can help support our efforts.

 

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook-icontwitter-iconrss-icon

 Get The Latest By Email

{emailcloak=off}

EVIDENCE

Will The Climate Warm As Much As Feared By Some?
Will The Climate Warm As Much As Feared By Some?
by Steven Sherwood et al
We know the climate changes as greenhouse gas concentrations rise, but the exact amount of expected warming remains…
Methane Emissions Hit Record Breaking Levels
Methane Emissions Hit Record Breaking Levels
by Josie Garthwaite
Global emissions of methane have reached the highest levels on record, research shows.
What The World Was Like The Last Time Carbon Dioxide Levels Were At 400ppm
What The World Was Like The Last Time Carbon Dioxide Levels Were At 400ppm
by James Shulmeister
The last time global carbon dioxide levels were consistently at or above 400 parts per million (ppm) was around four…
What An Ocean Hidden Under Antarctic Ice Reveals About Our Planet's Future Climate
What An Ocean Hidden Under Antarctic Ice Reveals About Our Planet's Future Climate
by Craig Stevens and Christina Hulbe
Jules Verne sent his fictional submarine, the Nautilus, to the South Pole through a hidden ocean beneath a thick ice…
Antarctic Ice Shelves Reveals A Missing Piece Of The Climate Puzzle
Antarctic Ice Shelves Reveals A Missing Piece Of The Climate Puzzle
by Katherine Hutchinson
Ice shelves, massive floating bodies of ice, are well-known for their buffering effect on land-based ice sheets as they…
Why We Won't Be Heading Into An Ice Age Any Time Soon
Why We Won't Be Heading Into An Ice Age Any Time Soon
by James Renwick
When I studied climate in my university geography course in the 1960s, I am sure we were told that the Earth was…
How Volcanoes Influence Climate And How Their Emissions Compare To What We Produce
How Volcanoes Influence Climate And How Their Emissions Compare To What We Produce
by Michael Petterson
Everyone is going on about reducing our carbon footprint, zero emissions, planting sustainable crops for biodiesel etc.
What Is Climate Sensitivity?
What Is Climate Sensitivity?
by Robert Colman and Karl Braganza
Humans are emitting CO2 and other greenhouse gases into the atmosphere. As these gases build up they trap extra heat…

LATEST VIDEOS

Methane Emissions Hit Record Breaking Levels
Methane Emissions Hit Record Breaking Levels
by Josie Garthwaite
Global emissions of methane have reached the highest levels on record, research shows.
kelp forrest 7 12
How The Forests Of The World’s Oceans Contribute To Alleviating The Climate Crisis
by Emma Bryce
Researchers are looking to kelp for help storing carbon dioxide far beneath the surface of the sea.
Tiny Plankton Drive Processes In The Ocean That Capture Twice As Much Carbon As Scientists Thought
Tiny Plankton Drive Processes In The Ocean That Capture Twice As Much Carbon As Scientists Thought
by Ken Buesseler
The ocean plays a major role in the global carbon cycle. The driving force comes from tiny plankton that produce…
Climate Change Threatens Drinking Water Quality Across The Great Lakes
Climate Change Threatens Drinking Water Quality Across The Great Lakes
by Gabriel Filippelli and Joseph D. Ortiz
“Do Not Drink/Do Not Boil” is not what anyone wants to hear about their city’s tap water. But the combined effects of…
Talking About Energy Change Could Break The Climate impasse
Talking About Energy Change Could Break The Climate Impasse
by InnerSelf Staff
Everyone has energy stories, whether they’re about a relative working on an oil rig, a parent teaching a child to turn…
Crops Could Face Double Trouble From Insects And A Warming Climate
Crops Could Face Double Trouble From Insects And A Warming Climate
by Gregg Howe and Nathan Havko
For millennia, insects and the plants they feed on have been engaged in a co-evolutionary battle: to eat or not be…
To Reach Zero Emissions Government Must Address Hurdles Putting People Off Electric Cars
To Reach Zero Emissions Government Must Address Hurdles Putting People Off Electric Cars
by Swapnesh Masrani
Ambitious targets have been set by the UK and Scottish governments to become net-zero carbon economies by 2050 and 2045…
Spring Is Arriving Earlier Across The US, And That's Not Always Good News
Spring Is Arriving Earlier Across The US, And That's Not Always Good News
by Theresa Crimmins
Across much of the United States, a warming climate has advanced the arrival of spring. This year is no exception.

LATEST ARTICLES

Two-thirds Of Glacier Ice In The Himalayas Could Be Lost By 2100
Two-thirds Of Glacier Ice In The Himalayas Could Be Lost By 2100
by Ann Rowan
In the world of glaciology, the year 2007 would go down in history. It was the year a seemingly small error in a major…
Rising Temps Could Kill Millions A Year By Century’s End
Rising Temps Could Kill Millions A Year By Century’s End
by Edward Lempinen
By the end of this century, tens of millions of people could die each year worldwide as a result of temperatures rising…
New Zealand Wants To Build A 100% Renewable Electricity Grid, But Massive Infrastructure Is Not The Best Option
New Zealand Wants To Build A 100% Renewable Electricity Grid, But Massive Infrastructure Is Not The Best Option
by Janet Stephenson
A proposed multibillion-dollar project to build a pumped hydro storage plant could make New Zealand’s electricity grid…
Wind Farms Built On Carbon-rich Peat Bogs Lose Their Ability To Fight Climate Change
Wind Farms Built On Carbon-rich Peat Bogs Lose Their Ability To Fight Climate Change
by Guaduneth Chico et al
Wind power in the UK now accounts for nearly 30% of all electricity production. Land-based wind turbines now produce…
Climate Denial Hasn't Gone Away – Here's How To Spot Arguments For Delaying Climate Action
Climate Denial Hasn't Gone Away – Here's How To Spot Arguments For Delaying Climate Action
by Stuart Capstick
In new research, we have identified what we call 12 “discourses of delay”. These are ways of speaking and writing about…
Routine Gas Flaring Is Wasteful, Polluting And Undermeasured
Routine Gas Flaring Is Wasteful, Polluting And Undermeasured
by Gunnar W. Schade
If you’ve driven through an area where companies extract oil and gas from shale formations, you’ve probably seen flames…
Flight Shaming: How To Spread The Campaign That Made Swedes Give Up Flying For Good
Flight Shaming: How To Spread The Campaign That Made Swedes Give Up Flying For Good
by Avit K Bhowmik
Europe’s major airlines are likely to see their turnover drop by 50% in 2020 as a result of the COVID-19 pandemic,…
Will The Climate Warm As Much As Feared By Some?
Will The Climate Warm As Much As Feared By Some?
by Steven Sherwood et al
We know the climate changes as greenhouse gas concentrations rise, but the exact amount of expected warming remains…