Why Carbon Dioxide Has Such Outsized Influence On Earth's Climate

Why Carbon Dioxide Has Such Outsized Influence On Earth's Climate The Orbiting Carbon Observatory satellite makes precise measurements of Earth’s carbon dioxide levels from space. NASA/JPL

I am often asked how carbon dioxide can have an important effect on global climate when its concentration is so small – just 0.041% of Earth’s atmosphere. And human activities are responsible for just 32% of that amount.

I study the importance of atmospheric gases for air pollution and climate change. The key to carbon dioxide’s strong influence on climate is its ability to absorb heat emitted from our planet’s surface, keeping it from escaping out to space.

Why Carbon Dioxide Has Such Outsized Influence On Earth's Climate The ‘Keeling Curve,’ named for scientist Charles David Keeling, tracks the accumulation of carbon dioxide in Earth’s atmosphere, measured in parts per million. Scripps Institution of Oceanography, CC BY

Early greenhouse science

The scientists who first identified carbon dioxide’s importance for climate in the 1850s were also surprised by its influence. Working separately, John Tyndall in England and Eunice Foote in the United States found that carbon dioxide, water vapor and methane all absorbed heat, while more abundant gases did not.

Scientists had already calculated that the Earth was about 59 degrees Fahrenheit (33 degrees Celsius) warmer than it should be, given the amount of sunlight reaching its surface. The best explanation for that discrepancy was that the atmosphere retained heat to warm the planet.

Tyndall and Foote showed that nitrogen and oxygen, which together account for 99% of the atmosphere, had essentially no influence on Earth’s temperature because they did not absorb heat. Rather, they found that gases present in much smaller concentrations were entirely responsible for maintaining temperatures that made the Earth habitable, by trapping heat to create a natural greenhouse effect.

A blanket in the atmosphere

Earth constantly receives energy from the sun and radiates it back into space. For the planet’s temperature to remain constant, the net heat it receives from the sun must be balanced by outgoing heat that it gives off.

Since the sun is hot, it gives off energy in the form of shortwave radiation at mainly ultraviolet and visible wavelengths. Earth is much cooler, so it emits heat as infrared radiation, which has longer wavelengths.

The electromagnetic spectrum is the range of all types of EM radiation – energy that travels and spreads out as it goes. The sun is much hotter than the Earth, so it emits radiation at a higher energy level, which has a shorter wavelength. NASA

Carbon dioxide and other heat-trapping gases have molecular structures that enable them to absorb infrared radiation. The bonds between atoms in a molecule can vibrate in particular ways, like the pitch of a piano string. When the energy of a photon corresponds to the frequency of the molecule, it is absorbed and its energy transfers to the molecule.

Carbon dioxide and other heat-trapping gases have three or more atoms and frequencies that correspond to infrared radiation emitted by Earth. Oxygen and nitrogen, with just two atoms in their molecules, do not absorb infrared radiation.

Most incoming shortwave radiation from the sun passes through the atmosphere without being absorbed. But most outgoing infrared radiation is absorbed by heat-trapping gases in the atmosphere. Then they can release, or re-radiate, that heat. Some returns to Earth’s surface, keeping it warmer than it would be otherwise.

Why Carbon Dioxide Has Such Outsized Influence On Earth's Climate Earth receives solar energy from the sun (yellow), and returns energy back to space by reflecting some incoming light and radiating heat (red). Greenhouse gases trap some of that heat and return it to the planet’s surface. NASA via Wikimedia

Research on heat transmission

During the Cold War, the absorption of infrared radiation by many different gases was studied extensively. The work was led by the U.S. Air Force, which was developing heat-seeking missiles and needed to understand how to detect heat passing through air.

This research enabled scientists to understand the climate and atmospheric composition of all planets in the solar system by observing their infrared signatures. For example, Venus is about 870 F (470 C) because its thick atmosphere is 96.5% carbon dioxide.

It also informed weather forecast and climate models, allowing them to quantify how much infrared radiation is retained in the atmosphere and returned to Earth’s surface.

People sometimes ask me why carbon dioxide is important for climate, given that water vapor absorbs more infrared radiation and the two gases absorb at several of the same wavelengths. The reason is that Earth’s upper atmosphere controls the radiation that escapes to space. The upper atmosphere is much less dense and contains much less water vapor than near the ground, which means that adding more carbon dioxide significantly influences how much infrared radiation escapes to space.

Carbon dioxide levels rise and fall around the world, changing seasonally with plant growth and decay.

Observing the greenhouse effect

Have you ever noticed that deserts are often colder at night than forests, even if their average temperatures are the same? Without much water vapor in the atmosphere over deserts, the radiation they give off escapes readily to space. In more humid regions radiation from the surface is trapped by water vapor in the air. Similarly, cloudy nights tend to be warmer than clear nights because more water vapor is present.

The influence of carbon dioxide can be seen in past changes in climate. Ice cores from over the past million years have shown that carbon dioxide concentrations were high during warm periods – about 0.028%. During ice ages, when the Earth was roughly 7 to 13 F (4-7 C) cooler than in the 20th century, carbon dioxide made up only about 0.018% of the atmosphere.

Even though water vapor is more important for the natural greenhouse effect, changes in carbon dioxide have driven past temperature changes. In contrast, water vapor levels in the atmosphere respond to temperature. As Earth becomes warmer, its atmosphere can hold more water vapor, which amplifies the initial warming in a process called the “water vapor feedback.” Variations in carbon dioxide have therefore been the controlling influence on past climate changes.

Small change, big effects

It shouldn’t be surprising that a small amount of carbon dioxide in the atmosphere can have a big effect. We take pills that are a tiny fraction of our body mass and expect them to affect us.

Today the level of carbon dioxide is higher than at any time in human history. Scientists widely agree that Earth’s average surface temperature has already increased by about 2 F (1 C) since the 1880s, and that human-caused increases in carbon dioxide and other heat-trapping gases are extremely likely to be responsible.

Without action to control emissions, carbon dioxide might reach 0.1% of the atmosphere by 2100, more than triple the level before the Industrial Revolution. This would be a faster change than transitions in Earth’s past that had huge consequences. Without action, this little sliver of the atmosphere will cause big problems.

About The Author

Jason West, Professor of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill

This article is republished from The Conversation under a Creative Commons license. Read the original article.

books_causes

 

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook-icontwitter-iconrss-icon

 Get The Latest By Email

{emailcloak=off}

EVIDENCE

What Is Climate Sensitivity?
What Is Climate Sensitivity?
by Robert Colman and Karl Braganza
Humans are emitting CO2 and other greenhouse gases into the atmosphere. As these gases build up they trap extra heat…
There Are No Time-travelling Climatologists: Why We Use Climate Models
There Are No Time-travelling Climatologists: Why We Use Climate Models
by Sophie Lewis and Sarah Perkins-Kirkpatrick
The first climate models were built on fundamental laws of physics and chemistry and designed to study the climate…
What Caused Major Climate Change In The Past?
This Is What Caused Major Climate Change In The Past
by James Renwick
Earth had several periods of high carbon dioxide levels in the atmosphere and high temperatures over the last several…
Will Three Billion People Really Live In Temperatures As Hot As The Sahara By 2070?
Will Three Billion People Really Live In Temperatures As Hot As The Sahara By 2070?
by Mark Maslin
Humans are amazing creatures, in that they have show they can live in almost any climate.
Tree Rings And Weather Data Warn Of Megadrought
Tree Rings And Weather Data Warn Of Megadrought
by Tim Radford
Farmers in the US West know they have a drought, but may not yet realise these arid years could become a megadrought.
We Just Spent Two Weeks Surveying The Great Barrier Reef. What We Saw Was An Utter Tragedy
We Just Spent Two Weeks Surveying The Great Barrier Reef. What We Saw Was An Utter Tragedy
by Terry Hughes and Morgan Pratchett
Author supplied The Australian summer just gone will be remembered as the moment when human-caused climate change…
5 Ways To Teach Children About Climate Change
5 Ways To Teach Children About Climate Change
by William Finnegan
Climate change is an interdisciplinary subject that both school children and adults think is important. And as we deal…
Polar Ice Melt Raises Sea Level Dangers
Polar Ice Melt Raises Sea Level Dangers
by Tim Radford
Greenland’s polar ice is now melting far faster than 30 years ago, Antarctic ice is retreating at an accelerating rate,…

LATEST VIDEOS

Talking About Energy Change Could Break The Climate impasse
Talking About Energy Change Could Break The Climate Impasse
by InnerSelf Staff
Everyone has energy stories, whether they’re about a relative working on an oil rig, a parent teaching a child to turn…
Crops Could Face Double Trouble From Insects And A Warming Climate
Crops Could Face Double Trouble From Insects And A Warming Climate
by Gregg Howe and Nathan Havko
For millennia, insects and the plants they feed on have been engaged in a co-evolutionary battle: to eat or not be…
To Reach Zero Emissions Government Must Address Hurdles Putting People Off Electric Cars
To Reach Zero Emissions Government Must Address Hurdles Putting People Off Electric Cars
by Swapnesh Masrani
Ambitious targets have been set by the UK and Scottish governments to become net-zero carbon economies by 2050 and 2045…
Spring Is Arriving Earlier Across The US, And That's Not Always Good News
Spring Is Arriving Earlier Across The US, And That's Not Always Good News
by Theresa Crimmins
Across much of the United States, a warming climate has advanced the arrival of spring. This year is no exception.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
A Georgia Town Gets Half Of Its Electricity From President Jimmy Carter's Solar Farm
A Georgia Town Gets Half Of Its Electricity From President Jimmy Carter's Solar Farm
by Johnna Crider
Plains, Georgia, is a small town that is just south of Columbus, Macon, and Atlanta and north of Albany. It is the…
Majority of US Adults Believe Climate Change Is Most Important Issue Today
by American Psychological Association
As the effects of climate change become more evident, more than half of U.S. adults (56%) say climate change is the…
How These Three Financial Firms Could Change The Direction Of The Climate Crisis
How These Three Financial Firms Could Change The Direction Of The Climate Crisis
by Mangulina Jan Fichtner, et al
A silent revolution is happening in investing. It is a paradigm shift that will have a profound impact on corporations,…

LATEST ARTICLES

Heatwaves Too Hot And Wet For Human Life Are Here
Heatwaves Too Hot And Wet For Human Life Are Here Now
by Tim Radford
Lethal heatwaves carrying air turned too hot and wet to survive are a threat which has arrived, thanks to climate…
How Dangerous Is Low-level Radiation To Children?
How Dangerous Is Low-level Radiation To Children?
by Paul Brown
A rethink on the risks of low-level radiation would imperil the nuclear industry’s future − perhaps why there’s never…
What We Do Now Could Change Earth's Trajectory
What We Do Now Could Change Earth's Trajectory
by Pep Canadell, et al
The numbers of people cycling and walking in public spaces during COVID-19 has skyrocketed.
Marine Heatwaves Spell Trouble For Tropical Reef Fish — Even Before Corals Die
Marine Heatwaves Spell Trouble For Tropical Reef Fish — Even Before Corals Die
by Jennifer M.T. Magel and Julia K. Baum
Despite the many challenges facing the world’s oceans today, coral reefs remain strongholds of marine biodiversity.
Warnings of Worse-Than-Usual Hurricane Season Point to Trouble Ahead
Warnings of Worse-Than-Usual Hurricane Season Point to Trouble Ahead
by Eoin Higgins
Hurricane season is about to start and its risks will only grow and potentially compound any impacts from the pandemic.
Australia, It's Time To Talk About Our Water Emergency
Australia, It's Time To Talk About Our Water Emergency
by Quentin Grafton et al
There’s another climate change influence we must also face up to: increasingly scarce water on our continent.
Fossil Fuels Are Heading Down, But Not Yet Out
Fossil Fuels Are Heading Down, But Not Yet Out
by Kieran Cooke
Renewable energy is making rapid inroads into the market, but fossil fuels still wield enormous global influence.
Human Action Will Decide How Much Sea Levels Rise
Human Action Will Decide How Much Sea Levels Rise
by Tim Radford
Sea levels will go on rising, because of human action. By how much, though, depends on what humans do next.