How Green Roofs Can Protect City Streets From Flooding

How Green Roofs Can Protect City Streets From Flooding The Acros Fukuoka eco-building in Fukuoka, Japan boasts one of the world’s most famous green roofs. The GRIT Lab at the University of Toronto is working to bring green roofs to the city and beyond in order to combat climate change. (Shutterstock)

Spring and summer 2017 have been among the wettest on record in eastern North America. And the world is still watching Houston, where Hurricane Harvey caused devastating flooding.

Rainfall amounts in the spring broke records in places like Toronto, where 44.6 millimetres of rain fell in 24 hours. The downpours earlier this spring caused the stormwater infrastructure in Canada’s biggest city to overflow, leading to flooding of busy downtown streets.

Urbanization in many North American cities has led to a rapid loss of permeable surfaces where water can freely drain. Coupled with the growing downtown core population in cities Toronto, this means that the stormwater and sewer systems in place must manage more water than in previous decades.

Furthermore, global temperature increases have been linked to the rise in extreme weather events worldwide, a trend that could worsen if global warming is not brought under control.

Many cities are ill-equipped to deal with these unprecedented amounts of precipitation due to their insufficient and outdated stormwater infrastructure.

How Green Roofs Can Protect City Streets From Flooding A tow truck driver walks through flood waters after hooking up a car on the Don Valley Parkway in Toronto after a major rainstorm in July 2013. THE CANADIAN PRESS/Frank Gunn

Twenty three per cent of Toronto’s downtown sewers are combined, meaning that both the city’s stormwater and wastewater flow together within one pipe to a water treatment plant. In periods of heavy rainfall, the amount of stormwater in the sewer can reach capacity and overflow onto Toronto’s streets and into its lake and rivers.

That means to prevent flooding in downtown areas, sewage is released — untreated — into bodies of water that permit swimming and other recreational sports.

With rainfall amounts on the rise globally, it’s a crucial time to examine how cities can retrofit their existing building infrastructure to alleviate flood damage and deal with stormwater in a more sustainable manner.

Green infrastructure technologies, such as permeable pavements, bioswales, cisterns and green roofs, are now commonly recommended to confront extreme weather events.

Green roofs for stormwater management

Green roofs are a green infrastructure (GI) option that can be applied to virtually any rooftop given weight load capacity. The benefits of green roofs extend far beyond their obvious aesthetic appeal.

A study done by University of Toronto civil engineer Jenny Hill and co-researchers at the school’s Green Roof Innovation Testing Lab (GRIT Lab) showed that green roofs have the capacity to capture an average of 70 per cent of rainfall over a given time, relieving underground stormwater systems and releasing the rain water back into the atmosphere.

How Green Roofs Can Protect City Streets From Flooding University of Toronto's GRIT Lab

The study examined four green roof design variables that represent the most common industry practices: Planting type (succulents or grasses and herbaceous flowering plants), soil substitute (mineral, wood compost), planting depth (10 centimetres or 15 centimetres) and irrigation schedule (none, daily or sensor-activated), and how these four factors influenced water capture.

The watering schedule was shown to have the greatest effect, with retention capacity increasing from 50 per cent with daily irrigation to 70 per cent with sensor-activated or no irrigation. In other words, roofs that have not been watered, or are only watered when their soil reaches a predetermined moisture level, have a greater capacity to absorb stormwater.

Furthermore, the study calculated a new peak runoff coefficient — a constant value used to calculate the capacity of a green roof to hold water — for green roofs to be around 0.1-0.15, an 85 to 90 per cent reduction compared to an impermeable surface.

Designers and engineers routinely use a figure of 0.5 (50 per cent reduction) to assess green roof performance. This discrepancy between industry practice and regional evidence-based findings highlights the need for further research.

How Green Roofs Can Protect City Streets From Flooding Rooftop succulents and flowering plants on the GRIT lab’s green roof. University of Toronto's GRIT Lab

The second most significant variable for stormwater retention was the soil substitute. The most widely used green roof planting material is based on guidelines from the German Landscape Research, Development and Construction Society (FLL).

The FLL recommended a mineral aggregate because it’s thought to be longer-lasting and hardier than biological soil substitutes. But this recommendation has been challenged by research today.

Hill and her team compared the mineral growing material to wood compost. The compost outperformed the mineral by 10 per cent (70 per cent versus 60 per cent rainfall retained) in beds with no irrigation, and had minimal compression or break-down over time.

Another key finding in Hill’s study demonstrated that when already damp, either from watering or rain, the planting material had the biggest influence on water retention. The compost outperformed the mineral soil substitute by as much as three times when fully saturated (83 per cent rainfall retained versus 29 per cent).

Compost a better soil substitute

That means that the compost not only performed better in every season, but it performed a great deal better in rainy seasons and during back-to-back storms.

Planting depth (10 centimetres versus 15 centimetres) and the plant family (succulents versus grass and herbaceous flowering plants) were both shown to have scant impact on stormwater retention compared to the planting material and watering schedule.

And so without compromising stormwater management, plant selection can meet aesthetic goals and environmental benchmarks such as biodiversity and species habitat.

How Green Roofs Can Protect City Streets From Flooding A bee hovers around a flowering plant at the U of T’s GRIT Lab rooftop garden. U of T GRIT Lab

One of the constraints for green roof construction is weight loading, particularly in buildings that were not originally constructed to accommodate the weight of a saturated green roof. Thus, a 10 centimetre planting depth as opposed to 15 would mean more roofs could be eligible for retrofit.

Nonetheless, even though a biodiverse plant palette including grasses and herbaceous plants would be a more aesthetically and ecologically rich green roof option, those plants do require watering in order to survive in cities like Toronto. Since irrigation has a negative effect on stormwater retention, green roof designers can consider drought-resistant succulent plants like sedum.

However, when herbaceous plants are planted in compost rather than mineral planting materials, the decrease in stormwater retention capacity could be prevented.

On-demand irrigation activated by a soil moisture sensor can balance water management with water availability for plant growth. Furthermore, compost weighs significantly less than mineral planting material, opening up more potential for retrofits.

And so Hill and her team’s research into four distinct green roof variables allows us to understand the benefits and limitations of each, and how they can be combined.

Green roofs: Optimal green infrastructure

In our opinion as researchers at the GRIT Lab, green roofs are the optimal urban green infrastructure due to their multi-functionality: They can be retrofitted onto existing buildings, they provide biodiverse space for urban wildlife and they can be enriching public spaces for city-dwellers to enjoy. Additionally, green roofs can make previously inhospitable places pleasant, and provide new outdoor space for office workers.

How Green Roofs Can Protect City Streets From Flooding A butterfly flutters around flowers at the GRIT Lab green roof. U of T GRIT Lab

These recent findings clearly show the potential of green roofs. But thorough scientific studies on green roofs, like those undertaken at the GRIT Lab, are necessary in order to determine the best green roof composition for optimal performance.

For example, though planting type had little effect on stormwater retention, the herbaceous mix of native plants has been shown to be more attractive for native bees and is arguably more attractive. This information is critical; although succulents are currently the industry standard, planting only succulents on roofs could potentially have a negative impact on urban ecology in various regions.

An additional variable to consider when designing a green roof is its location. GRIT Lab researcher Scott MacIvor and co-researchers found that building height matters: There are far fewer bee hives when green roofs are too high, and so designing a roof aimed at helping bees higher than eight storeys would be futile.

As storm events become more frequent and severe for municipalities, cities with aging stormwater infrastructure are struggling to find ways to alleviate the impact. Green roofs can be a part of this solution, but all green roofs are not created equal. The proper research and knowledge is essential.

About The Author

Catherine Howell, Research Assistant, GRIT Lab, University of Toronto; Jennifer Drake, Assistant Professor of Civil Engineering, University of Toronto, and Liat Margolis, Associate Professor of Landscape Architecture , University of Toronto

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Books

Climate Adaptation Finance and Investment in California

by Jesse M. Keenan
0367026074This book serves as a guide for local governments and private enterprises as they navigate the unchartered waters of investing in climate change adaptation and resilience. This book serves not only as a resource guide for identifying potential funding sources but also as a roadmap for asset management and public finance processes. It highlights practical synergies between funding mechanisms, as well as the conflicts that may arise between varying interests and strategies. While the main focus of this work is on the State of California, this book offers broader insights for how states, local governments and private enterprises can take those critical first steps in investing in society’s collective adaptation to climate change. Available On Amazon

Nature-Based Solutions to Climate Change Adaptation in Urban Areas: Linkages between Science, Policy and Practice

by Nadja Kabisch, Horst Korn, Jutta Stadler, Aletta Bonn
3030104176
This open access book brings together research findings and experiences from science, policy and practice to highlight and debate the importance of nature-based solutions to climate change adaptation in urban areas. Emphasis is given to the potential of nature-based approaches to create multiple-benefits for society.

The expert contributions present recommendations for creating synergies between ongoing policy processes, scientific programmes and practical implementation of climate change and nature conservation measures in global urban areas. Available On Amazon

A Critical Approach to Climate Change Adaptation: Discourses, Policies and Practices

by Silja Klepp, Libertad Chavez-Rodriguez
9781138056299This edited volume brings together critical research on climate change adaptation discourses, policies, and practices from a multi-disciplinary perspective. Drawing on examples from countries including Colombia, Mexico, Canada, Germany, Russia, Tanzania, Indonesia, and the Pacific Islands, the chapters describe how adaptation measures are interpreted, transformed, and implemented at grassroots level and how these measures are changing or interfering with power relations, legal pluralismm and local (ecological) knowledge. As a whole, the book challenges established perspectives of climate change adaptation by taking into account issues of cultural diversity, environmental justicem and human rights, as well as feminist or intersectional approaches. This innovative approach allows for analyses of the new configurations of knowledge and power that are evolving in the name of climate change adaptation. Available On Amazon

From The Publisher:
Purchases on Amazon go to defray the cost of bringing you InnerSelf.comelf.com, MightyNatural.com, and ClimateImpactNews.com at no cost and without advertisers that track your browsing habits. Even if you click on a link but don't buy these selected products, anything else you buy in that same visit on Amazon pays us a small commission. There is no additional cost to you, so please contribute to the effort. You can also use this link to use to Amazon at any time so you can help support our efforts.

 

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…
What Is A Hurricane Storm Surge and Why Is It So Dangerous?
What Is A Hurricane Storm Surge and Why Is It So Dangerous?
by Anthony C. Didlake Jr
As Hurricane Sally headed for the northern Gulf Coast on Tuesday, September 15, 2020, forecasters warned of a…

LATEST ARTICLES

How Bad Could Our Climate Future Be If We Do Nothing?
How Bad Could Our Climate Future Be If We Do Nothing?
by Mark Maslin, UCL
The climate crisis is no longer a looming threat – people are now living with the consequences of centuries of…
Wildfires Can Poison Drinking Water – Here's How Communities Can Be Better Prepared
Wildfires Can Poison Drinking Water – Here's How Communities Can Be Better Prepared
by Andrew J. Whelton and Caitlin R. Proctor, Purdue University
After the fires passed, testing ultimately revealed widespread hazardous drinking water contamination. Evidence…
Almost All The World’s Glaciers Are Shrinking—and Fast
Almost All The World’s Glaciers Are Shrinking—and Fast
by Peter Rüegg, ETH Zurich
A new study shows just how fast glaciers have lost thickness and mass over the past two decades.
Installing Solar Panels Over California's Canals Could Yield Water, Land, Air And Climate Payoffs
Installing Solar Panels Over California's Canals Could Yield Water, Land, Air And Climate Payoffs
by Roger Bales and Brandi McKuin, University of California
Climate change and water scarcity are front and center in the western U.S. The region’s climate is warming, a severe…
Changes In The Weather: El Niño and La Niña Explained
Changes In The Weather: El Niño and La Niña Explained
by Jaci Brown, CSIRO
We wait in anticipation of droughts and floods when El Niño and La Niña are forecast but what are these climatic events?
Mammals Face An Uncertain Future As Global Temperatures Rise
Mammals Face An Uncertain Future As Global Temperatures Rise
by Maria Paniw, and Rob Salguero-Gómez
Even with fires, droughts and floods regularly in the news, it’s difficult to comprehend the human toll of the climate…
Longer And More Frequent Droughts Are Hitting The Western US
Longer And More Frequent Droughts Are Hitting The Western US
by Rose Brandt, University of Arizona
Against the backdrop of steadily warming temperatures and decreasing annual rainfall totals, extreme-duration drought…
Farming Without Disturbing Soil Could Cut Agriculture's Climate Impact By 30%
Farming Without Disturbing Soil Could Cut Agriculture's Climate Impact By 30%
by Sacha Mooney, University of Nottingham et al
Perhaps because there are no chimney stacks belching smoke, the contribution of the world’s farms to climate change…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.