How Can Trees Really Cool Our Cities Down?

How Can Trees Really Cool Our Cities Down?

In cities around the world, trees are often planted to help control temperatures and mitigate the effects of the “urban heat island”. But while trees have been called “nature’s air conditioners”, in practice, scientists often have difficulty demonstrating their cooling properties.

The most obvious way to measure the cooling effect of trees would be to compare the air temperature in parks with that in nearby streets. But this method often comes up with disappointing results: even in large, leafy parks, the daytime air temperature is usually less than 1°C cooler than in the stuffy streets, and at night the temperature in parks can actually be higher.

To explain this contradiction, we need to think more clearly about the physics of heat flows in our cities, and the scale of the measurements we are taking.

Shady Days

Theoretically, trees can help provide cooling in two ways: by providing shade, and through a process known as evapotranspiration. Locally, trees provide most of their cooling effect by shading. How warm we feel actually depends less on local air temperature, and more on how much electromagnetic radiation we emit to, and absorb from, our surroundings. A tree’s canopy acts like a parasol, blocking out up to 90% of the sun’s radiation, and increasing the amount of heat that we lose to our surroundings by cooling the ground beneath us.

How Can Trees Really Cool Our Cities Down? Shade cools the ground. Roland Ennos, Author provided

All up, the shade provided by trees can reduce our physiologically equivalent temperature (that is, how warm we feel our surroundings to be) by between seven and 15°C, depending on our latitude. So it’s no surprise that, in the height of summer, people throng to the delicious coolness of the shade provided by London parks, Parisian boulevards, and Mediterranean plazas.

Trees can also cool down buildings – especially when planted to the east or west – as their shade prevents solar radiation from penetrating windows, or heating up external walls. Experimental investigations and modelling studies in the USA have shown that shade from trees can reduce the air conditioning costs of detached houses by 20% to 30%.

But air conditioning is more common in some places than in others: for example, while three out of four Australian households have an air conditioner, they’re much less common in Northern Europe, leaving the population there more vulnerable to the harms of urban heat. During the 2003 European heatwave, there were 70,000 more deaths recorded, compared with equivalent cool periods. We urgently need more research to find out how much shade from trees could cool down the terraced houses and apartment blocks, where so many less well-off people live.

Beating The Heat

Trees can also be used to tackle a bigger problem: the urban heat island. During periods of calm, sunny weather, the air temperature of cities can be raised above that of the surrounding countryside by up to 7°C, especially at night. In cities, the hard, dark asphalt and brick surfaces absorb almost all the incoming short-wave radiation from the sun, heating up to between 40°C and 60°C, and storing energy which is then released into the air during the still of night, when it can be trapped in the narrow street canyons.

How Can Trees Really Cool Our Cities Down? Evapotranspiration in action. Roland Ennos, Author provided

Urban trees can counter this process by intercepting the radiation before it reaches the ground, and using the energy for evapotranspiration. Evapotranspiration occurs when the sun’s rays hit the trees' canopy, causing water to evaporate from the leaves. This cools them down – just as sweating cools our skin – thereby reducing the amount of energy left to warm the air.

The effects of evapotranspiration can be quantified in two ways. First, you can measure the temperature of the tree canopy, which is typically much cooler than built surfaces – only 2°C to 3°C above air temperature. Unfortunately, we can’t really claim that this temperature difference is evidence of cooling capacity; leaves would be cooler than built surfaces even if they weren’t losing water, because they are cooled more effectively by convection.

A better method is to calculate the cooling effect of a tree directly, by measuring how much water it is losing. You can do this by measuring the sap flow up its trunk, or the water loss from single leaves. These methods show that tree canopies can divert over 60% of the incoming radiation to evapotranspiration. Even a small (4m high) Callery pear tree – a commonly planted species in Northern Europe – can provide around 6kW of cooling: the equivalent of two small air-conditioning units.

But there’s a catch: trees only provide this cooling effect when they are growing well. By measuring water loss from individual leaves, we showed that sparser, slower-growing plum and crab apple trees provided only a quarter of the cooling effect of the Callery pears. What’s more, the effectiveness of trees can be greatly reduced if the growing conditions are poor. We found that the transpiration of Callery pears could be reduced by a factor of five, if the roots were growing through compacted or poorly aerated soil. Much more research is needed on the relative performance of large and small trees, whether they’re planted on streets or in parks.

One final difficulty in working out the cooling power of trees is to determine how much a given tree’s evapotranspiration will actually reduce the air temperature. As so often in science, a modelling approach is needed, with physicists, engineers and biologists working together. We need to put realistic trees into detailed regional climate models, which can mimic the complex daily movements of air and energy through the city. Only then can we determine the regional benefits of the urban forest, and work out how to use trees to make our cities cooler and more pleasant places to live in.

About The Author

ennos rolandRoland Ennos, Professor of Biomechanics, University of Hull. He is interested in the ways in which organisms interact with the physical world, particularly in their structural engineering. He has investigated the mechanical design of insect wings and plant root systems and the mechanical defences of grasses, but recently

This article was originally published on The Conversation. Read the original article.

Related Books

InnerSelf Market

Amazon

YOU MAY ALSO LIKE

enafarzh-CNzh-TWdanltlfifrdeiwhihuiditjakomsnofaplptruesswsvthtrukurvi

follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration

LATEST VIDEOS

The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…

LATEST ARTICLES

3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
3 wildfire lessons for forest towns as Dixie Fire destroys historic Greenville, California
by Bart Johnson, Professor of Landscape Architecture, University of Oregon
A wildfire burning in hot, dry mountain forest swept through the Gold Rush town of Greenville, California, on Aug. 4,…
China Can Meet Energy and Climate Goals Capping Coal Power
China Can Meet Energy and Climate Goals Capping Coal Power
by Alvin Lin
At the Leader’s Climate Summit in April, Xi Jinping pledged that China will “strictly control coal-fired power…
A plane drops red fire retardant on to a forest fire as firefighters parked along a road look up into the orange sky
Model predicts 10-year burst of wildfire, then gradual decline
by Hannah Hickey-U. Washington
A look at the long-term future of wildfires predicts an initial roughly decade-long burst of wildfire activity,…
Blue water surrounded by dead white grass
Map tracks 30 years of extreme snowmelt across US
by Mikayla Mace-Arizona
A new map of extreme snowmelt events over the last 30 years clarifies the processes that drive rapid melting.
White sea ice in blue water with the sun setting reflected in the water
Earth’s frozen areas are shrinking 33K square miles a year
by Texas A&M University
The Earth’s cryosphere is shrinking by 33,000 square miles (87,000 square kilometers) per year.
A row of male and female speakers at microphones
234 scientists read 14,000+ research papers to write the upcoming IPCC climate report
by Stephanie Spera, Assistant Professor of Geography and the Environment, University of Richmond
This week, hundreds of scientists from around the world are finalizing a report that assesses the state of the global…
A brown weasel with a white belly leans on a rock and looks over its shoulder
Once common weasels are doing a vanishing act
by Laura Oleniacz - NC State
Three species of weasels, once common in North America, are likely in decline, including a species that’s considered…
Flood risk will rise as climate heat intensifies
by Tim Radford
A warmer world will be a wetter one. Ever more people will face a higher flood risk as rivers rise and city streets…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities

InnerSelf.comClimateImpactNews.com | InnerPower.net
MightyNatural.com | WholisticPolitics.com | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.