Climate Research Needs To Change To Help Communities Plan For The Future

Climate Research Needs To Change To Help Communities Plan For The Future How can we design projects, such as tunnels, to last decades yet still account for the uncertain effects of climate change? AP Photo/Julie Jacobson

Climate change is a chronic challenge – it is here now, and will be with us throughout this century and beyond. As the U.S. government’s National Climate Assessment report made clear, it’s already affecting people throughout the United States and around the world.

Warmer temperatures are making heat waves more intense, with harmful effects on human health. More intense rainfall and higher sea levels are leading to more frequent and intense flooding, with ensuing damages to property, infrastructure, business activity and health. Higher temperatures and strained water supplies are requiring new agricultural approaches, while fisheries are shifting and in some cases shrinking; in some cases, stressed food systems are contributing to national instability.

This reality means society needs to think about climate change in different ways than the past, by focusing on reducing the risk of negative effects. And speaking as a climate scientist, I recognize that climate science research, too, has to change.

Historically, climate science has been primarily curiosity-driven – scientists seeking fundamental understanding of the way our planet works because of the inherent interest in the problem.

Now it’s time for the climate science research enterprise to adopt an expanded approach, one that focuses heavily on integrating fundamental science inquiry with risk management.

Flexible infrastructure design

Climate risk management strategies need to be broad, ranging from efforts to reduce greenhouse gas emissions, to designing new infrastructure hardened against more frequent extreme weather, to policies that encourage development to shift to less exposed areas.

And these strategies must be flexible. In some cases, decisions made today affect people’s vulnerability for the rest of this century, even though there is much that remains to be learned about how climate change will unfold over the decades to come.

Consider the risks associated with sea-level rise.

The new rail tunnel under the Hudson River – if it is built – will likely still be in use in the next century. And yet, the scientific understanding of how much sea level will rise by the end of the century is quite imprecise. That’s because of uncertainty in how much greenhouse gases humans will emit and the immature scientific understanding of the ice-sheet physics.

It is possible – if emissions are high, and ice-sheet physics unstable – that the world could see 6 feet or more of global average sea-level rise over the course of this century, with substantially more in some regions. It is also possible – if emissions are low, or ice-sheet physics fairly stable – that it could be just 2 feet.

Climate Research Needs To Change To Help Communities Plan For The Future An aerial view of the New Jersey Turnpike shows how vulnerable the area is to flooding. Ken Lund, CC BY-SA

If we as a society are making decisions that affect the world a century from now, we cannot blindly ignore either of these possibilities. If we treat 6 feet as a certainty, we could end up making unnecessary expenditures that come at the cost of other important priorities; if we treat 2 feet as a certainty, we may be putting lives and property at substantial risk.

So the best is an iterative approach. Communities can identify the resources and features that they value. Engineers and planners can identify key benchmarks – for example, critical levels of sea-level rise – that would require strategic changes to protect these values resources and features. And scientists can figure out what observations and theoretical insights would allow us to learn about those benchmarks as quickly as possible.

When the scientists discover that a benchmark is going to be hit – for example, when ice-sheet observations and modeling make clear whether we are on course for 2 feet or 6 feet of sea-level rise in this century – the engineers, planners and policymakers can adjust accordingly.

Getting out of the ivory tower

This long-term, iterative process is a break with current practices. It requires sustained relationships that are not a good fit for much of the academic scientific enterprise, which is driven by curious individuals and funded by short-term grants.

There are signs, though, that climate scientists are getting out of the ivory tower and taking a different approach to research.

Transdisciplinary research recognizes stakeholders outside of academia as critical partners throughout the research process – from problem identification to solution deployment. People like Stanford’s Pam Matson and Harvard’s Bill Clark have been pioneers in this area, which they describe in the book “Pursuing Sustainability.” Matson, for example, has spent decades conducting interdisciplinary work with farming communities in Sonora, Mexico, that has led to both new insights into nitrogen cycling in the ocean and more sustainable agricultural practices.

True transdisciplinarity is hard – it requires a considerable investment on the part of researchers or their institutions in maintaining strong, working, trusting relationships with stakeholders, whether they be city planners, farmers, businesses, or members of vulnerable communities. And building such relationships is slow – if it must be done from scratch, it does not sit well with the time pressures faced by scientists who are not yet tenured faculty.

The land-grant university model

Fortunately, there is an example in the United States of institutions successfully maintaining long-term relationships between academic researchers and decision-makers in their communities.

In 1862, amidst the bloodshed of the Civil War, Congress established a network of land-grant universities, devoted to training the next generation of farmers and engineers, conducting research to advance agriculture, and engaging with farmers to disseminate the fruits of this research.

Climate Research Needs To Change To Help Communities Plan For The Future The Morrill Act of 1862 established land-grant universities to research agriculture and other areas for the benefit of students and society. Penn State, CC BY-NC

Many land-grant universities have extended the extension concept beyond agriculture. For example, at Rutgers where I teach, our extension service runs programs designed to help coastal communities increase their resilience to storm and sea-level rise. Rutgers staff have built partnerships, like the New Jersey Climate Change Alliance, that link communities, NGOs and businesses to climate science expertise. And the Rutgers Coastal Climate Risk and Resilience initiative trains graduate students to engage across disciplines and with stakeholders to address coastal challenges.

Elsewhere, the University of Arizona has built a Center for Climate Adaptation Science and Solution, the University of Washington is building an EarthLab, and the University of California, San Diego has a new Center for Climate Change Impacts and Adaptation. The recently established University Climate Change Coalition and Science for Climate Action Network are aiming to catalyze similar efforts.

But unlike the core agricultural work of cooperative extension, these climate risk-focused partnerships often lack institutional stability; most are the products of a small number of visionary individuals and many are funded one small grant at a time. And yet stability is critical for science that is intended to support decades of chronic risk management.

That’s why I believe it is worth considering a national investment in our universities that is analogous to that of cooperative extension but applied to scientific climate risk management.

These are not easy or cheap changes to make. But they are both easy and inexpensive when compared to the costs of climate change and the costs of the climate risk management decisions they will help inform.

Editor’s note: This article expands upon testimony delivered to the U.S. House of Representatives Committee on Science, Space, and Technology.The Conversation

About The Author

Robert Kopp, Professor, Department of Earth & Planetary Sciences, and Director, Rutgers Institute of Earth, Ocean, and Atmospheric Sciences, Rutgers University

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Related Books

InnerSelf Market


follow InnerSelf on

facebook icontwitter iconyoutube iconinstagram iconpintrest iconrss icon

 Get The Latest By Email

Weekly Magazine Daily Inspiration


The Great Climate Migration Has Begun
The Great Climate Migration Has Begun
by Super User
The climate crisis is forcing thousands around the world to flee as their homes become increasingly uninhabitable.
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
The Last Ice Age Tells Us Why We Need To Care About A 2℃ Change In Temperature
by Alan N Williams, et al
The latest report from the Intergovernmental Panel on Climate Change (IPCC) states that without a substantial decrease…
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
Earth Has Stayed Habitable For Billions Of Years – Exactly How Lucky Did We Get?
by Toby Tyrrell
It took evolution 3 or 4 billion years to produce Homo sapiens. If the climate had completely failed just once in that…
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
How Mapping The Weather 12,000 Years Ago Can Help Predict Future Climate Change
by Brice Rea
The end of the last ice age, around 12,000 years ago, was characterised by a final cold phase called the Younger Dryas.…
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
The Caspian Sea Is Set To Fall By 9 Metres Or More This Century
by Frank Wesselingh and Matteo Lattuada
Imagine you are on the coast, looking out to sea. In front of you lies 100 metres of barren sand that looks like a…
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
Venus Was Once More Earth-like, But Climate Change Made It Uninhabitable
by Richard Ernst
We can learn a lot about climate change from Venus, our sister planet. Venus currently has a surface temperature of…
Five Climate Disbeliefs: A Crash Course In Climate Misinformation
The Five Climate Disbeliefs: A Crash Course In Climate Misinformation
by John Cook
This video is a crash course in climate misinformation, summarizing the key arguments used to cast doubt on the reality…
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
The Arctic Hasn't Been This Warm For 3 Million Years and That Means Big Changes For The Planet
by Julie Brigham-Grette and Steve Petsch
Every year, sea ice cover in the Arctic Ocean shrinks to a low point in mid-September. This year it measures just 1.44…


How Wildfire Smoke Can Harm Human Health, Even When The Fire Is Hundreds Of Miles Away – A Toxicologist Explains
by Christopher T. Migliaccio
Smoke from more than 100 wildfires burning across Canada has been turning skies hazy in North American cities far from…
Atlantic Hurricane Season 2023: El Niño And Extreme Atlantic Ocean Heat Are About To Clash
by Christina Patricola
The Atlantic hurricane season starts on June 1, and forecasters are keeping a close eye on rising ocean temperatures,…
How Climate Change Is Impacting The Hudson Bay Lowlands — Canada’s Largest Wetland
by Matt Morison, University of Winnipeg and Nora Casson, University of Winnipeg
The starkly beautiful Hudson Bay Lowlands, located between the Canadian Shield and Hudson Bay, are covered in…
How Corporations Use Greenwashing To Convince You They Are Battling Climate Change
by Tom Lyon, University of Michigan
Many corporations claim their products are “green-friendly.” But how do you know if what they’re selling is truly…
smoke stacks 5 12
Climate Change First Went Viral Exactly 70 Years Ago
by Marc Hudson, University of Sussex
We have grown so used to many things. To the pictures of wildfires and cremated animals, to the ice sheets calving into…
Fire Danger In The High Mountains Is Intensifying
by Mohammad Reza Alizadeh, Massachusetts Institute of Technology (MIT) and Mojtaba Sadegh, Boise State University
As wildfire risk rises in the West, wildland firefighters and officials are keeping a closer eye on the high mountains…
Historic Flooding In Fort Lauderdale Was A Sign Of Things To Come
by Smitha Rao, The Ohio State University
When a powerful storm flooded neighborhoods in Fort Lauderdale, Florida, in April with what preliminary reports show…
What Is Hydrogen, And Can It Really Become A Climate Solution?
by Hannes van der Watt, University of North Dakota
Hydrogen, or H₂, is getting a lot of attention lately as governments in the U.S., Canada and Europe push to cut their…

 Get The Latest By Email

Weekly Magazine Daily Inspiration

New Attitudes - New Possibilities | | | InnerSelf Market
Copyright ©1985 - 2021 InnerSelf Publications. All Rights Reserved.